Gallium Nitride (GaN) Power Transistors, Gate Driving Techniques and Next Generation Integrated Power Converters
氮化镓 (GaN) 功率晶体管、栅极驱动技术和下一代集成功率转换器
基本信息
- 批准号:RGPIN-2014-04556
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gallium nitride (GaN) power transistors promise to be the game changer for the next generation integrated power converters. Traditional silicon based power MOSFETs are already reaching their material limits for power conversion. Aluminum gallium nitride (AlGaN)/GaN high-electron-mobility transistors (HEMTs) with high breakdown field, high-mobility 2-D electron gas (2DEG), high saturation velocity, and low intrinsic carrier density are emerging as the ideal candidate for the implementation of high frequency (10’s to 100’s MHz) and high efficiency (>90%) converters. The wide bandgap materials also allow GaN power devices to operate with a high junction temperature (> 200°C), relaxing the need for expensive heat removal mechanisms. The availability of GaN on silicon substrates can further reduce the cost of fabrication by making good use of existing silicon-based manufacturing facilities. This proposal is focused on the development of two key enabling technologies to fully exploit the potential of integrated GaN power converters: enhancement mode metal insulator semiconductor field effect transistors (MISFETs) and intelligent gate driving techniques.Currently, majority of the GaN based power transistors are depletion mode HEMTs. The normally “on” characteristics made them less favorable when robustness and fail-safe characteristics are critical. Monolithic integration of silicon-based devices and GaN devices is still not practical at this time (although GaN on Si technology will eventually allow the co-existence of CMOS circuits and GaN power HEMTs). As a result, there is a critical need to develop novel methods/structures to implement true enhancement mode GaN power devices with silicon processing compatibility, low leakage current, long term reliability and simple gate drive requirements. The development of enhancement mode GaN power transistors will involve the investigation of suitable gate insulators and device structures, passivation techniques and silicon compatible ohmic contacts. In particular, the oxidation of AlGaN layer, recessed gate etching techniques, silicon nitride passivation and gold-free ohmic contacts such as recessed Ti/Al/W contacts will be studied.In order to take advantage of the inherent switching speed of the GaN power devices to implement integrated power converters with fast transient response, high efficiency, and compact form factor, dedicated gate driving techniques are essential. Due to the presence of parasitic inductance and capacitance, rapid switching between ground and supply voltage levels will produce ringing oscillation, leading to unwanted power losses (reduced efficiency) and electromagnetic interference (EMI). The finite turn-on and turn-off switching speeds between the high side and low side power transistors in a typical output stage could also lead to a momentary short between the supply voltage to ground (shoot through current) during every switching period. This would result in unwanted power loss. The second theme of this project encompasses the design intelligent gate driver ICs to provide precision control of the gate voltage during switching to suppress both EMI and shoot through current in GaN power converters. The development of gate driving ICs with continuous dead-time correction (in sub-nanosecond increment) and dynamically programmable output resistance will allow high speed switching (>100’s MHz) and low switching loss to be achieved simultaneously.Finally, the proposed work will also explore methods to combine the CMOS gate drive circuits and the enhancement mode GaN power transistors to realize the next generation high speed, high efficiency integrated GaN power converters on the same silicon substrate.
氮化镓(GaN)功率晶体管有望成为下一代集成功率转换器的游戏规则改变者。传统的硅基功率MOSFET已经达到了功率转换的材料极限。氮化铝(AlGaN)/GaN高电子迁移率晶体管(HEMT)具有高击穿电场、高迁移率二维电子气(2DEG)、高饱和速度和低本征载流子密度等优点,是实现高频(10‘S到100’S MHz)和高效(>;90%)转换器的理想材料。宽禁带材料还允许GaN功率器件在较高的结温(>;200°C)下运行,从而无需昂贵的散热机制。硅衬底上GaN的可用性可以通过充分利用现有的硅基制造设施来进一步降低制造成本。该方案的重点是开发两种关键的使能技术,以充分挖掘集成GaN功率转换器的潜力:增强型金属绝缘体半导体场效应晶体管(MISFET)和智能栅极驱动技术。目前,大多数GaN基功率晶体管都是耗尽型HEMT。当健壮性和故障安全特性至关重要时,通常的“开”特性会使它们变得不那么有利。目前,硅基器件和GaN器件的单片集成仍然不现实(尽管GaN on Si技术最终将允许CMOS电路和GaN功率HEMT共存)。因此,迫切需要开发新的方法/结构来实现具有硅工艺兼容性、低漏电流、长期可靠性和简单的栅极驱动要求的真正增强模式GaN功率器件。增强型GaN功率晶体管的发展将涉及合适的栅绝缘体和器件结构、钝化技术和硅兼容欧姆接触的研究。重点研究了AlGaN层的氧化、凹栅刻蚀技术、氮化硅钝化技术和无金欧姆接触(如凹槽Ti/Al/W接触)。为了利用GaN功率器件固有的开关速度来实现具有快速暂态响应、高效率和紧凑外形的集成功率转换器,专用的栅极驱动技术是必不可少的。由于寄生电感和电容的存在,在接地和电源电压电平之间的快速切换会产生振铃振荡,导致不必要的功率损失(降低效率)和电磁干扰(EMI)。在典型的输出阶段,高端功率晶体管和低端功率晶体管之间有限的开启和关闭开关速度也可能导致每个开关周期内电源对地电压(击穿电流)之间的瞬时短路。这将导致不必要的断电。本项目的第二个主题是设计智能栅极驱动器IC,以在开关期间提供栅极电压的精确控制,以抑制GaN功率转换器中的EMI和击穿电流。具有连续死区校正(亚纳秒增量)和动态可编程输出电阻的栅极驱动集成电路的开发将使高速开关(>;100‘S MHz)和低开关损耗同时实现。最后,本文还将探索将CMOS栅驱动电路与增强型GaN功率晶体管相结合的方法,以在相同的硅衬底上实现新一代高速、高效的集成GaN功率转换器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ng, WaiTung其他文献
Ng, WaiTung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ng, WaiTung', 18)}}的其他基金
Wide Bandgap Power Semiconductor Devices for Next Generation Smart Power Electronics
用于下一代智能电力电子的宽带隙功率半导体器件
- 批准号:
RGPIN-2019-04462 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Design and manufacturing of liquid-cooled SiC power modules for EV applications
用于电动汽车应用的液冷SiC功率模块的设计和制造
- 批准号:
570515-2021 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
CMOS Process Sensors and Design Methodology in Advanced Technology Nodes
先进技术节点中的 CMOS 工艺传感器和设计方法
- 批准号:
543852-2019 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Wide Bandgap Power Semiconductor Devices for Next Generation Smart Power Electronics
用于下一代智能电力电子的宽带隙功率半导体器件
- 批准号:
RGPIN-2019-04462 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
MOST - Manufacturing and applications of GaN power semiconductor devices/modules
MOST - GaN功率半导体器件/模块的制造和应用
- 批准号:
521470-2018 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Strategic Projects - Group
CMOS Process Sensors and Design Methodology in Advanced Technology Nodes
先进技术节点中的 CMOS 工艺传感器和设计方法
- 批准号:
543852-2019 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Wide Bandgap Power Semiconductor Devices for Next Generation Smart Power Electronics
用于下一代智能电力电子的宽带隙功率半导体器件
- 批准号:
RGPIN-2019-04462 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Wide Bandgap Power Semiconductor Devices for Next Generation Smart Power Electronics
用于下一代智能电力电子的宽带隙功率半导体器件
- 批准号:
RGPIN-2019-04462 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
CMOS Process Sensors and Design Methodology in Advanced Technology Nodes
先进技术节点中的 CMOS 工艺传感器和设计方法
- 批准号:
543852-2019 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
MOST - Manufacturing and applications of GaN power semiconductor devices/modules
MOST - GaN功率半导体器件/模块的制造和应用
- 批准号:
521470-2018 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Strategic Projects - Group
相似国自然基金
基于稀氮砷化镓(Dilute nitride GaNAs)的近红外自旋放大纳米线激光器的研究
- 批准号:61905071
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
STTR Phase II: Integrated Gallium Nitride (GaN) Field Effect Transistor (FET)-Based High Density On Board Electric Vehichle (EV) Charger
STTR 第二阶段:基于集成氮化镓 (GaN) 场效应晶体管 (FET) 的高密度车载电动汽车 (EV) 充电器
- 批准号:
2052316 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Manufacturing of gallium nitride (GaN) membranes for efficient thermal management
SBIR 第一阶段:制造氮化镓 (GaN) 膜以实现高效热管理
- 批准号:
2135112 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Gallium Nitride Smart Power Integrated Circuit Technology (GaN SPICe)
氮化镓智能功率集成电路技术(GaN SPICe)
- 批准号:
EP/V026577/1 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Research Grant
Gallium Nitride Smart Power Integrated Circuit Technology (GaN SPICe)
氮化镓智能功率集成电路技术(GaN SPICe)
- 批准号:
EP/V026127/1 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Research Grant
Feasibility assessment of a novel light-weight ultra-efficient Gallium Nitride (GaN) traction inverter for ultra-low emission vehicles
用于超低排放车辆的新型轻质超高效氮化镓 (GaN) 牵引逆变器的可行性评估
- 批准号:
78443 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative R&D
Direct non-oxidative conversion of methane to aromatic compounds (building blocks for aromatic compounds) on gallium nitride (GaN) catalyst
在氮化镓 (GaN) 催化剂上将甲烷直接非氧化转化为芳香族化合物(芳香族化合物的结构单元)
- 批准号:
504859-2017 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Gallium Nitride (GaN) Power Transistors, Gate Driving Techniques and Next Generation Integrated Power Converters
氮化镓 (GaN) 功率晶体管、栅极驱动技术和下一代集成功率转换器
- 批准号:
RGPIN-2014-04556 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Direct non-oxidative conversion of methane to aromatic compounds (building blocks for aromatic compounds) on gallium nitride (GaN) catalyst
在氮化镓 (GaN) 催化剂上将甲烷直接非氧化转化为芳香族化合物(芳香族化合物的结构单元)
- 批准号:
504859-2017 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of 25gbit/s Distributed Feedback (DFB) Laser Devices Spectral control of the output from Gallium Nitride (GaN) lasers and subsystems
开发 25gbit/s 分布式反馈 (DFB) 激光设备 氮化镓 (GaN) 激光器和子系统输出的光谱控制
- 批准号:
1930084 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Studentship
Direct non-oxidative conversion of methane to aromatic compounds (building blocks for aromatic compounds) on gallium nitride (GaN) catalyst
在氮化镓 (GaN) 催化剂上将甲烷直接非氧化转化为芳香族化合物(芳香族化合物的结构单元)
- 批准号:
504859-2017 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral