Advanced Microsystems through alternative microfabrication processes

通过替代微加工工艺实现先进微系统

基本信息

  • 批准号:
    RGPIN-2017-06567
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

A World Economic Forum report on the future of manufacturing emphasized the need for flexible, rapid and low cost manufacturing. The project proposes a framework for the next generation microsystems aligned with this vision, supported by advances in three supporting pillars: manufacturing technology, device level innovations and a mostly-digital system architecture, easy to adapt and reconfigure. The microsystems of the future will consist of the hybrid integration on flexible or rigid substrates of microtransducers (arrays or clusters), a thin interfacing analog layer and advanced digital signal processing algorithms implemented on low-power off-the shelf silicon dies. The integration of printed antenna will also add the wireless interconnectivity in complex IoT structures, where the processing power can be delegated to the cloud. The low-cost, rapid manufacturing pillar relies on the robustness of photo-polymerization process of materials like SU-8, even when mixed with particles/molecules that modifies its physico-chemical properties. Functionalized SU-8 thin layers can be patterned by high resolution maskless lithography, so that they can be used to define (electrical and optical) interconnects, passive components, and microtransducers, from chemical sensors to moving MEMS structures. The technology will allow not only a high-density hybrid integration on flexible substrates with off-the-shelf dies, but also a die level integration (thin polymer sensor layer on the top of a Si die). To enable further scalability, modern device level techniques will exploit the electromechanical coupling to enhance the sensitivity at microscale: operation on the stability border, parametric amplification and mode localization effects in weakly-coupled resonators. The third pillar addresses the system-level architecture, where the desire to minimize the analog electronic interface leads to mostly digital closed-loop systems, based on sliding mode control. Three target applications will validate the vision: (1) an advanced inertial measurement unit (IMU) for inertial navigation, (2) an ultrasound imaging transducer based on polymer CMUT arrays and (3) a resonant polymer cantilever array with embedded microfluidic channels for fluid analysis. The IMU will validate the polymer-based technology for in-plane movable MEMS structures, and will use high-sensitivity accelerometers operated on their stability border through digital sliding mode control, while the gyroscope sensitivity will be enhanced through parametric amplification. The CMUT array will validate the out-of-plane electrical actuation and hermetic sealing. The weakly-coupled cantilevers with shaped microfluidic channels for fluid analysis will exploit mode localization effects to increase the sensitivity of the sensors with orders of magnitude compared to the common frequency shift sensing technique.
世界经济论坛关于制造业未来的报告强调了灵活、快速和低成本制造的必要性。该项目提出了一个与这一愿景相一致的下一代微系统框架,由三大支柱的进步支持:制造技术,设备级创新和易于适应和重新配置的大部分数字系统架构。未来的微系统将包括微传感器(阵列或集群)的柔性或刚性基板上的混合集成,薄接口模拟层和在低功率现成硅芯片上实现的先进数字信号处理算法。印刷天线的集成还将在复杂的物联网结构中增加无线互连性,其中处理能力可以委托给云。低成本,快速制造支柱依赖于SU-8等材料的光聚合过程的稳健性,即使与改变其物理化学性质的颗粒/分子混合。功能化SU-8薄层可以通过高分辨率无掩模光刻进行图案化,因此它们可以用于定义(电气和光学)互连、无源元件和微换能器,从化学传感器到移动MEMS结构。该技术不仅可以在柔性基板上与现成的芯片进行高密度混合集成,还可以实现芯片级集成(Si芯片顶部的薄聚合物传感器层)。为了实现进一步的可扩展性,现代器件级技术将利用机电耦合来提高微尺度下的灵敏度:稳定边界上的操作,弱耦合谐振器中的参数放大和模式局部化效应。第三个支柱涉及系统级架构,其中最小化模拟电子接口的愿望导致基于滑模控制的大多数数字闭环系统。三个目标应用将验证该愿景:(1)用于惯性导航的先进惯性测量单元(IMU),(2)基于聚合物CMUT阵列的超声成像换能器和(3)用于流体分析的嵌入式微流体通道的谐振聚合物悬臂梁阵列。IMU将验证用于面内可移动MEMS结构的基于聚合物的技术,并将使用通过数字滑模控制在其稳定边界上操作的高灵敏度加速度计,而陀螺仪灵敏度将通过参数放大来增强。CMUT阵列将验证面外电致动和气密密封。用于流体分析的具有成形微流体通道的弱耦合悬臂梁将利用模式局部化效应,与常见的频移感测技术相比,以数量级增加传感器的灵敏度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cretu, Edmond其他文献

Novel band-pass sliding mode control for driving MEMS-based resonators
  • DOI:
    10.1016/j.sna.2012.01.005
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Sarraf, Elie H.;Sharma, Mrigank;Cretu, Edmond
  • 通讯作者:
    Cretu, Edmond
Weakly-Coupled Resonators in Capacitive Readout Circuits
Ring Resonator Optical Gyroscopes-Parameter Optimization and Robustness Analysis
  • DOI:
    10.1109/jlt.2012.2188884
  • 发表时间:
    2012-06-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Guillen-Torres, Miguel Angel;Cretu, Edmond;Chrostowski, Lukas
  • 通讯作者:
    Chrostowski, Lukas
Pull-in-based μg-resolution accelerometer: Characterization and noise analysis
  • DOI:
    10.1016/j.sna.2011.01.027
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Dias, Rosana A.;Cretu, Edmond;Rocha, Luis A.
  • 通讯作者:
    Rocha, Luis A.
Parametric resonance: Amplification and damping in MEMS gyroscopes
  • DOI:
    10.1016/j.sna.2011.08.009
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Sharma, Mrigank;Sarraf, Elie Hanna;Cretu, Edmond
  • 通讯作者:
    Cretu, Edmond

Cretu, Edmond的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cretu, Edmond', 18)}}的其他基金

Micro-acousto-electro-mechanical systems (MAEMS). A systemic approach for a pervasive ultrasound
微声机电系统(MAEMS)。
  • 批准号:
    RGPIN-2022-05302
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
  • 批准号:
    RGPIN-2017-06567
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
  • 批准号:
    RGPIN-2017-06567
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
  • 批准号:
    RGPIN-2017-06567
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
  • 批准号:
    RGPIN-2017-06567
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
  • 批准号:
    327738-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
  • 批准号:
    327738-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
  • 批准号:
    327738-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
  • 批准号:
    327738-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
  • 批准号:
    327738-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
  • 批准号:
    2339731
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Ultra-precision machining of optoelectronics and microsystems (UPROAR)
光电和微系统超精密加工(UPROAR)
  • 批准号:
    EP/W024772/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Photodynamic Therapy via Implantable Microsystems for Cancer Treatment
通过植入式微系统进行光动力疗法治疗癌症
  • 批准号:
    EP/X017516/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Smart Biomedical Microsystems
智能生物医学微系统
  • 批准号:
    CRC-2018-00035
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Canada Research Chairs
CREATE-MICROSYSTEMS TECHNOLOGIES & APPLICATION (MTA)
创建微系统技术
  • 批准号:
    565163-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Collaborative Research and Training Experience
Wireless Microsystems for Augmented Machine and Human Intelligence
用于增强机器和人类智能的无线微系统
  • 批准号:
    RGPIN-2022-04228
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Microsystems base stand-alone pin point navigation system development
Microsystems 基于独立精确定位导航系统的开发
  • 批准号:
    573484-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Engineered microsystems to assess endothelial contribution to myeloproliferative neoplasm thrombosis
工程微系统评估内皮对骨髓增生性肿瘤血栓形成的贡献
  • 批准号:
    10674047
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Innovative biomedical microsystems driven by data and artificial intelligence
由数据和人工智能驱动的创新生物医学微系统
  • 批准号:
    RGPIN-2022-03984
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了