Micro-acousto-electro-mechanical systems (MAEMS). A systemic approach for a pervasive ultrasound
微声机电系统(MAEMS)。
基本信息
- 批准号:RGPIN-2022-05302
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrasound (US) imaging systems provide significant advantages that justify why they remain the dominant clinical imaging procedure (more than 25%), and the use of ultrasound outside the medical field, in non-destructive testing (NDT), industrial (e.g. automotive) or consumer applications (e.g. for haptic interfaces). We have developed a novel, low-cost, polymer based microfabrication technology for Capacitive Micromachined Ultrasonic Transducer (CMUT) arrays, with a fabrication cycle of days, and competitive transducer performance. The present research program propagates the benefits of this technology, in a structured way, to the various architectural layers of an ultrasound system, to address most of the present challenges in US imaging and align with a vision where ultrasound will become ubiquitous. We entitle the program "from MEMS to MAEMS", to emphasize on the expansion of already pervasive MEMS (Micro-electro-mechanical systems) into a wider MAEMS (Micro-acousto-electro-mechanical systems) realm. Several major challenges in US systems are addressed in a combined and novel manners, at different coupled levels: technology development, device innovations, electronic interface, hybrid integration and assembly, array signal processing and intelligent data fusion. Low-cost, even disposable US transducers and systems are achievable through low-cost and green transducers microfabrication, combined with mostly digital electronic interfaces and hybrid assembly solutions (3D printing). Individual-level customization, impossible in classic Si-foundries manufacturing, is possible through the rapid microfabrication cycle (1-2 days), combined with programmable digital electronics and a fast and concurrent design and simulation cycle using extracted reduced-order macromodels (ROMs). High performance imaging will be obtained through large area US arrays on flexible substrates (conformal US), enabling 3D imaging, multi-imaging fusion (e.g. X-Ray + US or opto-acoustic) that relies on the optical and X-Ray transparency of the polymer used, and adaptive beamforming based on data fusion, using information from extra curvature/position sensors embedded in the array. The interconnection/communication bottleneck for a large number of channels are addressed through stacked assemblies of polyCMUT arrays and electronics, digital bitstreams channels, combined with compressive sensing. Advanced signal processing applications will combine super-resolution imaging algorithms with the electrical programmability of polyCMUT (through variable DC bias voltages). The integrated path in designing US systems presents unique opportunities for optimizations and novelties through coupling between different system layers. Two main applications are targeted, to validate the power of our approach: a low-cost conformal US system for biomedical imaging (heart monitoring) and a large area imaging system for NDT of CFRP plates used in the aerospace industry.
超声(US)成像系统提供了显著的优势,证明了为什么它们仍然是占主导地位的临床成像程序(超过25%),以及在无损检测(NDT),工业(例如汽车)或消费者应用(例如触觉界面)中使用超声在医疗领域之外。我们已经开发出一种新颖的,低成本的,基于聚合物的电容式微机械超声换能器(CMUT)阵列的微制造技术,具有天的制造周期,和竞争力的换能器性能。本研究计划以结构化的方式将该技术的优势传播到超声系统的各个架构层,以解决US成像中的大多数当前挑战,并与超声将变得无处不在的愿景保持一致。我们将该计划命名为“从MEMS到MAEMS”,以强调将已经普及的MEMS(微机电系统)扩展到更广泛的MAEMS(微声机电系统)领域。美国系统中的几个主要挑战是在不同的耦合层次上以组合和新颖的方式解决的:技术开发,设备创新,电子接口,混合集成和组装,阵列信号处理和智能数据融合。通过低成本和绿色换能器微制造,结合大多数数字电子接口和混合组装解决方案(3D打印),可以实现低成本,甚至一次性US换能器和系统。通过快速的微制造周期(1-2天),结合可编程数字电子技术以及使用提取的降阶宏模型(ROM)的快速并行设计和仿真周期,可以实现传统硅铸造厂制造中不可能实现的个性化定制。高性能成像将通过柔性衬底上的大面积US阵列获得(适形超声),实现3D成像,多成像融合(例如,X射线+ US或光声),其依赖于所使用的聚合物的光学和X射线透明度,以及基于数据融合的自适应波束形成,使用来自嵌入在阵列中的额外曲率/位置传感器的信息。通过polyCMUT阵列和电子器件、数字比特流通道的堆叠组件与压缩感测相结合,解决了大量通道的通信瓶颈。先进的信号处理应用将联合收割机超分辨率成像算法与polyCMUT的电气可编程性(通过可变直流偏置电压)相结合。设计US系统的集成路径通过不同系统层之间的耦合为优化和创新提供了独特的机会。两个主要的应用程序是有针对性的,以验证我们的方法的力量:一个低成本的适形US系统的生物医学成像(心脏监测)和大面积成像系统的无损检测的CFRP板在航空航天工业中使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cretu, Edmond其他文献
Novel band-pass sliding mode control for driving MEMS-based resonators
- DOI:
10.1016/j.sna.2012.01.005 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:4.6
- 作者:
Sarraf, Elie H.;Sharma, Mrigank;Cretu, Edmond - 通讯作者:
Cretu, Edmond
Weakly-Coupled Resonators in Capacitive Readout Circuits
- DOI:
10.1109/tcsi.2014.2365331 - 发表时间:
2015-02-01 - 期刊:
- 影响因子:5.1
- 作者:
Hafizi-Moori, Siamak;Cretu, Edmond - 通讯作者:
Cretu, Edmond
Ring Resonator Optical Gyroscopes-Parameter Optimization and Robustness Analysis
- DOI:
10.1109/jlt.2012.2188884 - 发表时间:
2012-06-15 - 期刊:
- 影响因子:4.7
- 作者:
Guillen-Torres, Miguel Angel;Cretu, Edmond;Chrostowski, Lukas - 通讯作者:
Chrostowski, Lukas
Pull-in-based μg-resolution accelerometer: Characterization and noise analysis
- DOI:
10.1016/j.sna.2011.01.027 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:4.6
- 作者:
Dias, Rosana A.;Cretu, Edmond;Rocha, Luis A. - 通讯作者:
Rocha, Luis A.
Parametric resonance: Amplification and damping in MEMS gyroscopes
- DOI:
10.1016/j.sna.2011.08.009 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:4.6
- 作者:
Sharma, Mrigank;Sarraf, Elie Hanna;Cretu, Edmond - 通讯作者:
Cretu, Edmond
Cretu, Edmond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cretu, Edmond', 18)}}的其他基金
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
- 批准号:
RGPIN-2017-06567 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
- 批准号:
RGPIN-2017-06567 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
- 批准号:
RGPIN-2017-06567 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
- 批准号:
RGPIN-2017-06567 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
- 批准号:
RGPIN-2017-06567 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
- 批准号:
327738-2011 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
- 批准号:
327738-2011 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
- 批准号:
327738-2011 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
- 批准号:
327738-2011 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Rapid microfabrication of microsystems for ultrasound imaging and mechanical signal processing
用于超声成像和机械信号处理的微系统的快速微加工
- 批准号:
327738-2011 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
RII Track-4:NSF:Understanding the Fundamental Physics of Acousto-Magnetic Microswimmers to Realize Precise, Tunable Motion at Microscales
RII Track-4:NSF:了解声磁微型游泳器的基础物理学,以实现微尺度的精确、可调运动
- 批准号:
2229636 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
High resolution spectroscopy apparatus for acousto-optic-electric investigations at low temperatures
用于低温声光电研究的高分辨率光谱仪
- 批准号:
494822818 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Major Research Instrumentation
Explore and demonstrate strong acousto-optic interactions at multi-GHZ frequencies for a wide variety of applications
探索并展示针对各种应用的多 GHZ 频率下的强声光相互作用
- 批准号:
2611199 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
PFI-TT: Acousto-Electric Semiconductor Amplifiers to Expand Wireless Connectivity to a Larger Population of End-Users
PFI-TT:声电半导体放大器将无线连接扩展到更多的最终用户
- 批准号:
2122670 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Towards CyberSHM: autonomous acousto-ultrasonic health monitoring of operational composite structures
迈向 CyberSHM:运行复合结构的自主声超声波健康监测
- 批准号:
EP/V055577/1 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Research Grant
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
- 批准号:
10526413 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
- 批准号:
10300995 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Acousto-optical RF field sensors for safer diagnostic and interventional MRI
用于更安全的诊断和介入 MRI 的声光射频场传感器
- 批准号:
9917421 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别: