Deep learning with limited data

数据有限的深度学习

基本信息

  • 批准号:
    RGPIN-2017-05117
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Deep neural networks is a machine learning technique based on a model of neuron-like elements. The "deep" refers here to networks with many layers that are capable of representing complex functions. Such models have been proven to be extremely valuable as they can learn hierarchical data representations from examples and predict previously unseen data. Such techniques enabled much of the recent progress in computer vision and pattern recognition, and the advancements of deep neural networks was made possible by the availability of large data sets (Big Data), some refinement of algorithms, and the availability of increased computational power with specialized processors such as graphical processing units (GPUs). Companies like Google, Microsoft, Amazon and Facebook, and also numerous smaller engineering firms and market analysis firms are embracing this new technology. ******However, many applications do not have the luxury of having a large set of examples available to train complex models. In the research program proposed here I am trying to develop methods for applications with limited data, which includes a variety of situations such as small number of measurements, biased examples, or examples from peripheral data. Applications with limited data are common. For example, in the ocean science community it is common to have a fairly small coverage of measurements compared to the vastness of the oceans. My lab has started to investigate how artificial data can augment pre-training and facilitate the narrowing of the search space. For example, there exist a variety of physical models of ocean dynamics such as the exchange of CO2 with the atmosphere. While these models are generally considered to be insufficient for predictions on the required scale, it is possible that these simulations can provide data for the pre-training of deep networks.******Another area that promises a whole new level of techniques to training deep networks is the guidance of the learning process by domain experts, also called transfer learning. Domain experts include hereby either deep neural networks that have been trained on complementary or similar domains, or even human experts. While transfer learning has been considered for some time, the use of deep networks to learn appropriate communication channels for learning opened exciting new possibilities for much progress in this area. Such expert training would provide network training that parallels human learning. Such techniques could further drastically reduce the need of large training sets. ******The long-term goal of this research program is to develop specific methods and tools to both evaluate a machine-learning problem in terms of its complexity and data need, and to provide a comprehensive toolbox to apply pre-learning and expert transfer learning strategies to problem domains that suffer from limited data.
深度神经网络是一种基于类神经元模型的机器学习技术。这里的“深度”是指具有许多层的网络,这些层能够表示复杂的功能。这些模型已经被证明是非常有价值的,因为它们可以从示例中学习分层数据表示,并预测以前看不见的数据。这些技术使计算机视觉和模式识别领域的许多最新进展成为可能,而深度神经网络的进步是由于大数据集(大数据)的可用性,算法的一些改进以及图形处理单元(GPU)等专用处理器的计算能力增加。谷歌、微软、亚马逊和Facebook等公司,以及许多小型工程公司和市场分析公司都在接受这项新技术。** 然而,许多应用程序并没有足够的大量示例来训练复杂的模型。在这里提出的研究计划中,我试图为有限数据的应用开发方法,其中包括各种情况,如少量测量,有偏见的例子,或来自外围数据的例子。数据有限的应用程序很常见。例如,在海洋科学界,与浩瀚的海洋相比,测量的覆盖面很小是很常见的。我的实验室已经开始研究人工数据如何增强预训练并缩小搜索空间。例如,存在各种海洋动力学的物理模型,如二氧化碳与大气的交换。虽然这些模型通常被认为不足以进行所需规模的预测,但这些模拟可能可以为深度网络的预训练提供数据。另一个有望为训练深度网络带来全新技术水平的领域是领域专家对学习过程的指导,也称为迁移学习。因此,领域专家包括已经在互补或类似领域上训练过的深度神经网络,甚至包括人类专家。虽然迁移学习已经被考虑了一段时间,但使用深度网络来学习适当的学习沟通渠道为这一领域的许多进展开辟了令人兴奋的新可能性。这种专家培训将提供与人类学习并行的网络培训。这种技术可以进一步大幅减少对大型训练集的需求。该研究计划的长期目标是开发特定的方法和工具,以评估机器学习问题的复杂性和数据需求,并提供一个全面的工具箱,将预学习和专家迁移学习策略应用于数据有限的问题领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trappenberg, Thomas其他文献

Modeling Saccadic Action Selection: Cortical and Basal Ganglia Signals Coalesce in the Superior Colliculus
  • DOI:
    10.3389/fnsys.2019.00003
  • 发表时间:
    2019-02-13
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Coe, Brian C.;Trappenberg, Thomas;Munoz, Douglas P.
  • 通讯作者:
    Munoz, Douglas P.
A biological mechanism for Bayesian feature selection: Weight decay and raising the LASSO
  • DOI:
    10.1016/j.neunet.2015.03.005
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Connor, Patrick;Hollensen, Paul;Trappenberg, Thomas
  • 通讯作者:
    Trappenberg, Thomas
Asymmetrical reliability of the Alda score favours a dichotomous representation of lithium responsiveness
  • DOI:
    10.1371/journal.pone.0225353
  • 发表时间:
    2020-01-27
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nunes, Abraham;Trappenberg, Thomas;Alda, Martin
  • 通讯作者:
    Alda, Martin
Machine learning for contour classification in TG-263 noncompliant databases.
A critical evaluation of dynamical systems models of bipolar disorder.
  • DOI:
    10.1038/s41398-022-02194-4
  • 发表时间:
    2022-09-28
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Nunes, Abraham;Singh, Selena;Allman, Jared;Becker, Suzanna;Ortiz, Abigail;Trappenberg, Thomas;Alda, Martin
  • 通讯作者:
    Alda, Martin

Trappenberg, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trappenberg, Thomas', 18)}}的其他基金

Deep learning with limited data
数据有限的深度学习
  • 批准号:
    RGPIN-2017-05117
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Deep learning with limited data
数据有限的深度学习
  • 批准号:
    RGPIN-2017-05117
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Deep learning with limited data
数据有限的深度学习
  • 批准号:
    RGPIN-2017-05117
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Deep learning with limited data
数据有限的深度学习
  • 批准号:
    RGPIN-2017-05117
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated learning systems that anticipate
预测的集成学习系统
  • 批准号:
    249885-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of holographic water samples with deep networks
利用深层网络分析全息水样
  • 批准号:
    507097-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Integrated learning systems that anticipate
预测的集成学习系统
  • 批准号:
    249885-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Automated video analysis of immune cell activation and microvascular blood flow in the inflamed microcirculation
自动视频分析发炎微循环中的免疫细胞激活和微血管血流
  • 批准号:
    491559-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Adaptive Motion Tracking for the Spiri UAS
Spiri UAS 的自适应运动跟踪
  • 批准号:
    471476-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Integrated learning systems that anticipate
预测的集成学习系统
  • 批准号:
    249885-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Deep Learning with Limited Data for Battery Materials Design
电池材料设计中数据有限的深度学习
  • 批准号:
    EP/Y000552/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
  • 批准号:
    10619943
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Maternal mHealth blood hemoglobin analysis with informed deep learning
通过知情深度学习进行孕产妇 mHealth 血液血红蛋白分析
  • 批准号:
    10566426
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Mobile phone-based deep learning algorithm for oral lesion screening in low-resource settings
基于手机的深度学习算法,用于资源匮乏环境下的口腔病变筛查
  • 批准号:
    10526857
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
  • 批准号:
    10503039
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208272
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Knowledge-informed Deep Learning for Apnea Detection with Limited Annotations
用于具有有限注释的呼吸暂停检测的知识型深度学习
  • 批准号:
    10509437
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
  • 批准号:
    10664026
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208361
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208356
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了