Deep Learning Enabled Low Cost Photonic Sensors
支持深度学习的低成本光子传感器
基本信息
- 批准号:RGPIN-2022-03946
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While photonic sensors have made tremendous progress in last decade in research and are commonly used in laboratories, their use in field is still hampered by the high cost of testing equipment and photonics chips. The research program aims to develop low-cost optics and photonics sensors using nanophotonics and integrating edge-artificial intelligence (edge-AI). While the main application considered is sensors for food quality, the proposal aims to develop an integrated platform with applications in other areas including healthcare and defense. Worldwide it is estimated that approximately 1.3 billion tons of food is wasted annually resulting in a loss of over $1 Trillion dollars. Besides the financial impact, there is also very significant environmental impact. The wasted food leads to wasted chemicals like fertilizers and pesticides used to cultivate; wasted fuel used in transport; and the creation of methane from decay. In Canada, organic waste is the second highest component of the landfill. Most of this food waste is avoidable if the food was better managed through dynamic routing. However, that requires the ability to measure the quality and shelf life of food at distribution and retail centers. Visible and near-infrared spectroscopy has shown promise but the high cost of spectrometers makes the solution nonviable. In recent works, we have shown that carefully selected wavelengths can be used to measure shelf life and quality metrics nearly as accurately as spectrometers while reducing the cost by orders of magnitude. In this part of the research program, we will investigate designing and fabricating low cost application specific integrated spectrometer and use of edge-AI to correct for optical aberrations and also chemometrics. Specifically, we will investigate nanowire based photonic integrated imagers which allow spectral filtering and detection within the same element. One major issue facing commercial deployment is the complex training of models where one has to try out many combinations of algorithms to find the most optimized model. Recently, we have developed a deep learning model which integrates Deep-Q reinforcement learning with supervised learning. The method allows to train an AI model in 2-3 % of the time required for standard supervised learning. In this program, we will further develop this model and integrate it with a novel deep learning algorithm which goes through the different combination of models and finds the optimized model. In short term over the 5 years of the proposal, we will develop the sensor for predicting acrylamide formation in high temperature processing through chemometrics of raw materials. In long term, we will extend the technology to build multispectral imagers and investigate more applications. The research program is designed to leverage the advances made in our group in the area of nanophotonics, nanofabrication and smartphone integrated optical sensors.
虽然光子传感器在过去十年的研究中取得了巨大的进步,并在实验室中得到了广泛的应用,但由于测试设备和光子芯片的高成本,它们在现场的使用仍然受到阻碍。该研究计划旨在开发使用纳米光子学和集成边缘人工智能(edge-ai)的低成本光学和光子学传感器。虽然考虑的主要应用是食品质量传感器,但该提案旨在开发一个集成平台,用于医疗保健和国防等其他领域的应用。据估计,全世界每年约有13亿吨粮食被浪费,造成超过100亿美元的损失。除了财务影响外,还有很大的环境影响。浪费的食物会导致浪费化学品,如用于种植的化肥和杀虫剂;运输中浪费的燃料;以及腐烂产生的甲烷。在加拿大,有机废物是垃圾填埋场的第二大组成部分。如果通过动态路线更好地管理食物,大多数食物浪费是可以避免的。然而,这需要能够在分销和零售中心测量食品的质量和保质期。可见光和近红外光谱已经显示出前景,但光谱仪的高成本使解决方案不可行。在最近的工作中,我们已经表明,精心选择的波长可以用来测量保质期和质量指标几乎一样准确的光谱仪,同时降低成本的数量级。在研究计划的这一部分中,我们将研究设计和制造低成本的专用集成光谱仪,并使用边缘AI来校正光学像差和化学计量学。具体来说,我们将研究基于纳米线的光子集成成像器,其允许在同一元件内进行光谱过滤和检测。商业部署面临的一个主要问题是模型的复杂训练,其中必须尝试许多算法组合以找到最优化的模型。最近,我们开发了一种深度学习模型,将Deep-Q强化学习与监督学习相结合。该方法允许在标准监督学习所需时间的2- 3%内训练AI模型。在这个项目中,我们将进一步开发这个模型,并将其与一种新的深度学习算法相结合,该算法可以通过不同的模型组合来找到最优化的模型。在短期内,我们将在5年的提案中,通过原料的化学计量学开发预测高温加工中丙烯酰胺形成的传感器。从长远来看,我们将扩展该技术,以建立多光谱成像仪和研究更多的应用。 该研究计划旨在利用我们在纳米光子学,纳米纤维和智能手机集成光学传感器领域取得的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saini, Simarjeet其他文献
Saini, Simarjeet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saini, Simarjeet', 18)}}的其他基金
Nanophotonics in low cost applications
低成本应用中的纳米光子学
- 批准号:
RGPIN-2014-05276 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Fabrication of an Optical Imaging Device for Point-of-Care Diagnostics
用于即时诊断的光学成像设备的制造
- 批准号:
514110-2017 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Nanophotonics in low cost applications
低成本应用中的纳米光子学
- 批准号:
RGPIN-2014-05276 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Nanophotonics in low cost applications
低成本应用中的纳米光子学
- 批准号:
RGPIN-2014-05276 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Nanophotonics in low cost applications
低成本应用中的纳米光子学
- 批准号:
RGPIN-2014-05276 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Air quality sensors for automated HEPA Filtration
用于自动 HEPA 过滤的空气质量传感器
- 批准号:
468543-2014 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Nanophotonics in low cost applications
低成本应用中的纳米光子学
- 批准号:
RGPIN-2014-05276 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Surface Plasmonic Array Sensor (SPlAS) for Environmental Sensing
用于环境传感的表面等离子体阵列传感器 (SPlAS)
- 批准号:
447947-2013 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
Interband cascade vertical surface emitting lasers for optofluidic biochemical sensors
用于光流控生化传感器的带间级联垂直表面发射激光器
- 批准号:
355852-2009 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Integrated optical slicer for high throughput spectroscopy
用于高通量光谱的集成光学切片机
- 批准号:
451564-2013 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Intelligent and Integrated Control of V2X-Enabled Autonomous Vehicles using Deep Reinforcement Learning
使用深度强化学习对支持 V2X 的自动驾驶车辆进行智能集成控制
- 批准号:
RGPIN-2021-02839 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
ERI: Sub-diffractive Optical Trapping Enabled by Deep-Learning-Assisted Metasurface Design
ERI:深度学习辅助超表面设计实现次衍射光捕获
- 批准号:
2138869 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Deep Learning-Enabled Arterial Pulse Waveform Analysis Approach to Peripheral Artery Disease Diagnosis
基于深度学习的动脉脉搏波形分析方法用于外周动脉疾病诊断
- 批准号:
10411311 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
RINGS: A Deep Reinforcement Learning Enabled Large-scale UAV Network with Distributed Navigation, Mobility Control, and Resilience
RINGS:深度强化学习支持的大规模无人机网络,具有分布式导航、移动控制和弹性
- 批准号:
2148253 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Deep learning enabled, deep ultraviolet scanning microscopy for intraoperative assessment of margin status during breast cancer surgery
支持深度学习的深紫外扫描显微镜用于乳腺癌手术期间边缘状态的术中评估
- 批准号:
10567960 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Deep learning enabled, deep ultraviolet scanning microscopy for intraoperative assessment of margin status during breast cancer surgery
支持深度学习的深紫外扫描显微镜用于乳腺癌手术期间边缘状态的术中评估
- 批准号:
10697381 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Deep learning enabled simulation of plasmonic photocatalysis
深度学习能够模拟等离子体光催化
- 批准号:
EP/X014088/1 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Research Grant
MFB: Deep-Learning Enabled Structure Prediction and Design of Protein-DNA Assemblies
MFB:深度学习支持蛋白质-DNA 组装的结构预测和设计
- 批准号:
2226466 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant