Low-dimensional structures in high-dimensional data
高维数据中的低维结构
基本信息
- 批准号:RGPIN-2020-04572
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural images tend to be compressible, i.e., the amount of information needed to encode an image is small. For example, a magnetic resonance image (MRI) of the brain can be well-approximated by just the largest 5--10% of its wavelet coefficients. This conciseness of information---in other words, low dimensionality of the signal---is found throughout a plethora of applications ranging from MRI to radar to quantum state tomography. It is natural to ask: can the number of measurements needed to determine a signal be comparable with the information content? Measurements can take many forms, and questions of this nature are especially prevalent in data science. Indeed, the analysis of Big Data often reduces to the question of what low-dimensional model to consider and how to use this model to synthesize the data. Furthermore, as the ambient dimension grows bigger, the gains from using lower dimensional structures become much more apparent. In recent years, compressed sensing MRI has taken advantage of the inherent structure of images leading to a new measurement paradigm which has ultimately had a large impact on medical technology. In 2017, the USA Food and Drug Administration approved of MRI devices from Siemens and GE which have leveraged compressed sensing to speed up the procedure by a factor of 8-16. For example, cardiac imaging is reduced from four minutes to 16 seconds. I have contributed significantly to the foundational understanding of compressed sensing and continue to work in its generalizations. Recently, the idea of using a fixed signal structure has been replaced with the idea of learning the signal structure with a deep neural net. Neural nets have had great success for both learning signal structures and classification. However, they are not well understood from a foundational perspective. I am working towards this foundational understanding. At the same time, and in part to stay grounded, I am working to use deep learning for retinal image classification, with the ultimate goal of helping doctors to predict eye diseases.
自然图像往往是可压缩的,即,编码图像所需的信息量很小。例如,大脑的磁共振图像(MRI)可以很好地近似于其小波系数的最大5- 10%。这种信息的简洁性--换句话说,信号的低维性--在从MRI到雷达到量子态断层扫描的大量应用中都可以找到。很自然地会问:确定信号所需的测量次数是否可以与信息内容相比较? 测量可以采取多种形式,这种性质的问题在数据科学中尤其普遍。事实上,对大数据的分析往往归结为考虑什么低维模型以及如何使用该模型来综合数据的问题。此外,随着环境维度变大,使用低维结构的收益变得更加明显。近年来,压缩感知MRI利用了图像的固有结构,从而产生了一种新的测量范式,最终对医疗技术产生了重大影响。2017年,美国食品和药物管理局批准了西门子和通用电气的MRI设备,这些设备利用压缩传感将程序加速了8-16倍。例如,心脏成像从4分钟减少到16秒。 我为压缩传感的基础理解做出了重大贡献,并继续致力于其推广。最近,使用固定信号结构的想法已经被用深度神经网络学习信号结构的想法所取代。神经网络在学习信号结构和分类方面都取得了巨大的成功。然而,从基础的角度来看,它们还没有得到很好的理解。我正在努力实现这种基础的理解。同时,部分原因是为了保持接地,我正在努力使用深度学习进行视网膜图像分类,最终目标是帮助医生预测眼科疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Plan, Yaniv其他文献
The Generalized Lasso With Non-Linear Observations
- DOI:
10.1109/tit.2016.2517008 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:2.5
- 作者:
Plan, Yaniv;Vershynin, Roman - 通讯作者:
Vershynin, Roman
Learning Tensors From Partial Binary Measurements
- DOI:
10.1109/tsp.2018.2879031 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:5.4
- 作者:
Ghadermarzy, Navid;Plan, Yaniv;Yilmaz, Ozgur - 通讯作者:
Yilmaz, Ozgur
1-Bit matrix completion
- DOI:
10.1093/imaiai/iau006 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:1.6
- 作者:
Davenport, Mark A.;Plan, Yaniv;Wootters, Mary - 通讯作者:
Wootters, Mary
Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements
- DOI:
10.1109/tit.2011.2111771 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:2.5
- 作者:
Candes, Emmanuel J.;Plan, Yaniv - 通讯作者:
Plan, Yaniv
Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach
- DOI:
10.1109/tit.2012.2207945 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Plan, Yaniv;Vershynin, Roman - 通讯作者:
Vershynin, Roman
Plan, Yaniv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Plan, Yaniv', 18)}}的其他基金
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPAS-2020-00092 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPIN-2020-04572 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPAS-2020-00092 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPIN-2020-04572 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPAS-2020-00092 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Enhancement of low-dimensional embedding methods for complex structures in spatiotemporal data with their applications
时空数据中复杂结构的低维嵌入方法及其应用的增强
- 批准号:
23K11018 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning of graph diffusion and transport from high dimensional data with low-dimensional structures
职业:从具有低维结构的高维数据中学习图扩散和传输
- 批准号:
2237842 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Towards Harmonic Analysis in Wasserstein Space: Low-Dimensional Structures, Learning, and Algorithms
Wasserstein 空间中的调和分析:低维结构、学习和算法
- 批准号:
2309519 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Low-dimensional topology and algebraic structures
低维拓扑和代数结构
- 批准号:
22K03311 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPAS-2020-00092 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPIN-2020-04572 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Low-dimensional structures in high-dimensional data
高维数据中的低维结构
- 批准号:
RGPAS-2020-00092 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Accelerator Supplements














{{item.name}}会员




