Automated medical diagnostic image quality control using AI-based techniques
使用基于人工智能的技术进行自动化医疗诊断图像质量控制
基本信息
- 批准号:570437-2021
- 负责人:
- 金额:$ 14.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computed Tomography (CT) and Magnetic resonance imaging (MRI) images are critical diagnostic tools routinely use for diagnosis, treatment planning, and monitoring disease progression. CT and MRI images are particularly critical for evaluating the damage caused to the lungs, brain, and blood vessels, particularly as we are continuing to discover the systemic effects that Covid -19 infections have on the body. The accuracy and timeliness of patient diagnosis on radiology scanners is a direct function of the quality of the images produced during a patient scan. Poor quality images can result in a missed or incorrect diagnosis. In the best-case scenario, an image acquired by a mis-calibrated scanner will result in a costly, time consuming, repeated patient scan, and if undetected it can result in a missed diagnosis which may seriously risk patients' health and, in some cases, lead to death. The overall goal of the proposed research is to develop a novel solution for performing automated Quality Control (QC), utilizing AI-based analysis of clinical images. Through a partnership with the University of British Columbia (UBC), Advanced Quality Systems (AQS), and Interior Health Authority (IHA), the proposed solution will use artificial intelligence (AI)-based analysis of clinical images that will directly increase the ability and availability of Canadian CT and MRI scanners to be used in patient diagnosis, treatment, research and development. As the Canada recovers from the Covid-19 pandemic, this research will help address the increased need for rapid, accurate clinical diagnosis during a period of reduced healthcare staffing levels imposed by infection control measures and staff burnout.
计算机断层扫描(CT)和磁共振成像(MRI)图像是常规用于诊断、治疗计划和监测疾病进展的关键诊断工具。CT和MRI图像对于评估对肺部、大脑和血管造成的损害尤为重要,特别是我们正在继续发现新冠肺炎感染对身体的全身影响。放射扫描仪上患者诊断的准确性和及时性是患者扫描期间产生的图像质量的直接函数。 质量差的图像可能导致漏诊或误诊。在最好的情况下,由错误校准的扫描仪获取的图像将导致昂贵、耗时、重复的患者扫描,并且如果未被检测到,则可能导致漏诊,这可能严重危及患者的健康,并且在某些情况下导致死亡。 这项研究的总体目标是开发一种新的解决方案,利用基于AI的临床图像分析来执行自动质量控制(QC)。通过与不列颠哥伦比亚省大学(UBC)、高级质量系统(AQS)和内政部卫生局(IHA)的合作,拟议的解决方案将使用基于人工智能(AI)的临床图像分析,这将直接提高加拿大CT和MRI扫描仪用于患者诊断、治疗、研究和开发的能力和可用性。随着加拿大从COVID-19大流行中恢复过来,这项研究将有助于在感染控制措施和工作人员倦怠导致医疗人员减少的时期内解决对快速,准确临床诊断的日益增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feldman, RebeccaE其他文献
Feldman, RebeccaE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于循证医学本体论的临床元数据语言研究
- 批准号:30972549
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
完善城镇居民基本医疗保险的"基本医疗服务包"研究
- 批准号:70873131
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
基于计算模型的医用X线最优曝光控制技术的研究
- 批准号:60472004
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 14.06万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 14.06万 - 项目类别:
Automated enhancement and correction of brain MRI images that leverages the entire imaging exam
利用整个成像检查自动增强和校正脑部 MRI 图像
- 批准号:
10760852 - 财政年份:2023
- 资助金额:
$ 14.06万 - 项目类别:
Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
- 批准号:
10741242 - 财政年份:2023
- 资助金额:
$ 14.06万 - 项目类别:
Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation
开发和评估用于自动诊断生成的多模式临床诊断推理模型
- 批准号:
10724044 - 财政年份:2023
- 资助金额:
$ 14.06万 - 项目类别:
Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx)
基于自动化高纯度外泌体分离的 AD 诊断系统 (AHEADx)
- 批准号:
10738697 - 财政年份:2023
- 资助金额:
$ 14.06万 - 项目类别:
M-ISIC: A Multimodal Open-Source International Skin Imaging Collaboration Informatics Platform for Automated Skin Cancer Detection
M-ISIC:用于自动皮肤癌检测的多模式开源国际皮肤成像协作信息学平台
- 批准号:
10528944 - 财政年份:2022
- 资助金额:
$ 14.06万 - 项目类别:
M-ISIC: A Multimodal Open-Source International Skin Imaging Collaboration Informatics Platform for Automated Skin Cancer Detection
M-ISIC:用于自动皮肤癌检测的多模式开源国际皮肤成像协作信息学平台
- 批准号:
10689201 - 财政年份:2022
- 资助金额:
$ 14.06万 - 项目类别:
An automated system to differentiate Kawasaki disease from febrile illness with real life clinical datasets in New York City
利用纽约市真实临床数据集区分川崎病和发热性疾病的自动化系统
- 批准号:
10477176 - 财政年份:2022
- 资助金额:
$ 14.06万 - 项目类别:
An Integrated and Automated Tool for Quantification of Biomechanics in Fetal and Neonatal Echocardiography
用于量化胎儿和新生儿超声心动图生物力学的集成自动化工具
- 批准号:
10704636 - 财政年份:2022
- 资助金额:
$ 14.06万 - 项目类别: