Mathematical Sciences: Computation of Stability Information and Global Error Estimation with Applications
数学科学:稳定性信息计算和全局误差估计及其应用
基本信息
- 批准号:9505049
- 负责人:
- 金额:$ 7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-08-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Van Vleck The investigator analyzes the behavior and stability properties of differential equations under discretization. In particular, methods are developed for the efficient computation of stability information and global error estimation for large systems of ordinary differential equations. The research is focused in two areas. The first area is to determine methods for accurately computing Lyapunov exponents and related quantities. This includes analysis of methods and their errors and the development of robust software to determine not only the Lyapunov exponents but also an estimate of the error in their computation. The second area is in the study of backward and shadowing error analysis as a means for characterizing global error when solving nonlinear differential equations numerically. The investigator applies these concepts to discrete in space, continuous in time difderential equations that arise in the biological and physical sciences. The ultimate goal of this project is to analyze, develop and implement algorithms for the long-time, large-scale computation of approximate trajectories for systems of lattice differential equations. While computing trajectories the codes simultaneously obtain global error estimates and finite time Lyapunov exponents or kinematic eigenvalues and the associated growth/decay directions. This research is expected to yield contributions in the areas of dynamical systems, numerical analysis and applied modeling. The goal of this project is to provide improved accuracy in simulations of models corresponding to large scale physical and biological processes. With more accurate simulations these models may be studied in greater detail and this should lead to improvements in the models. Because of the large scale nature of the models the investigator employs distributed and parallel computing environments. The techniques to be used to increase the accuracy of the simulations rely on mathematical techniques in dynamical systems and numerical analysis. In particular, the investigator develops techniques that attempt to isolate the potential for error. He is particularly interested in determining the directions in which approximate solutions, obtained during simulations, expand and contract. Additionally, he wishes to determine the rate at which this contraction and expansion takes place. This allows to determine which directions in the approximate solution are susceptible to error growth (i.e. the directions corresponding to expansion) and which directions are less susceptible to error growth (i.e. the contracting directions). Ultimately, the contraction and expansion information is to be incorporated into the simulation software. This information is used to control the error in the simulation and estimate the final error in the approximate solution. The methods are aimed at showing that near the approximate solution there exists an exact physical solution. This may be an exact solution of a slightly different model or an exact solution for the model being studied but starting from a slightly different sample.
Van Vleck等人分析了离散化条件下微分方程组的性态和稳定性。特别地,发展了大型常微分方程组的稳定性信息的有效计算和全局误差估计的方法。研究主要集中在两个方面。第一个领域是确定准确计算李亚普诺夫指数和相关量的方法。这包括分析方法及其误差,以及开发稳健的软件,不仅确定李亚普诺夫指数,而且估计其计算中的误差。第二个领域是研究向后和跟踪误差分析,作为一种在数值求解非线性微分方程组时表征全局误差的手段。研究人员将这些概念应用于生物和物理科学中出现的空间离散、时间连续的微分方程式。这个项目的最终目标是分析、开发和实现算法,用于长时间、大规模地计算格点微分方程组的近似轨迹。在计算轨迹时,代码同时获得全局误差估计和有限时间Lyapunov指数或运动学特征值以及相关的增长/衰减方向。这项研究有望在动力系统、数值分析和应用建模领域做出贡献。该项目的目标是提高与大规模物理和生物过程相对应的模型的模拟精度。有了更准确的模拟,这些模型可能会被更详细地研究,这应该会导致模型的改进。由于模型的大规模性质,研究人员采用了分布式和并行计算环境。用来提高模拟精度的技术依赖于动力系统和数值分析中的数学技术。特别是,研究人员开发了一些技术,试图隔离出错的可能性。他对确定在模拟过程中获得的近似解的扩展和收缩方向特别感兴趣。此外,他希望确定这种收缩和扩张的速度。这允许确定近似解中的哪些方向容易受到误差增长的影响(即,对应于扩展的方向)以及哪些方向较不容易受到误差增长的影响(即,收缩方向)。最终,收缩和膨胀信息将被合并到模拟软件中。该信息用于控制模拟中的误差,并估计近似解中的最终误差。这些方法的目的是证明在近似解附近存在精确的物理解。这可能是略有不同的模型的精确解,也可能是正在研究的模型的精确解,但从略有不同的样本开始。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Van Vleck其他文献
Projected Data Assimilation using Sliding Window Proper Orthogonal Decomposition
使用滑动窗口适当正交分解的投影数据同化
- DOI:
10.1016/j.jcp.2024.113235 - 发表时间:
2023 - 期刊:
- 影响因子:4.1
- 作者:
Aishah Albarakati;M. Budišić;Erik Van Vleck - 通讯作者:
Erik Van Vleck
Erik Van Vleck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Van Vleck', 18)}}的其他基金
The Midwest Mathematics and Climate Conference
中西部数学与气候会议
- 批准号:
1445371 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
The Central Region Conference on Numerical Analysis and Dynamical Systems
中部地区数值分析与动力系统会议
- 批准号:
1211934 - 财政年份:2012
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Approximation of Infinite Dimensional Dynamics
无限维动力学的近似
- 批准号:
1115408 - 财政年份:2011
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Numerical Spectral Analysis and Approximation of Functional Traveling Waves
函数行波的数值谱分析和近似
- 批准号:
0812800 - 财政年份:2008
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Lattice Differential Equations and the Computation of Stability Spectra
格微分方程与稳定谱的计算
- 批准号:
0513438 - 财政年份:2005
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Approximation of Lyapunov Exponents
FRG:合作研究:李雅普诺夫指数的近似
- 批准号:
0139824 - 财政年份:2002
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Approximation and Computation of Lyapunov Exponents, Global Errors, and Functional Traveling Waves
Lyapunov 指数、全局误差和函数行波的逼近和计算
- 批准号:
9973393 - 财政年份:1999
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
- 批准号:
9732069 - 财政年份:1998
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
System Identification and Nonlinear Wave Equations for the Modeling of Soil Properties
用于土壤特性建模的系统辨识和非线性波动方程
- 批准号:
9721424 - 财政年份:1998
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Exploratory Experimentation and Computation in the Mathematical Sciences: Theory and Practice
数学科学中的探索性实验和计算:理论与实践
- 批准号:
DP140101417 - 财政年份:2014
- 资助金额:
$ 7万 - 项目类别:
Discovery Projects
Upgrade computation lab for pacific institute for the mathematical sciences at ubc
升级 ubc 太平洋数学科学研究所计算实验室
- 批准号:
219666-1999 - 财政年份:1998
- 资助金额:
$ 7万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Mathematical Sciences: Computation, Optimization, Singularity, and Vibration Analysis of Polygonal Elastic Thin Plates
数学科学:多边形弹性薄板的计算、优化、奇异性和振动分析
- 批准号:
9622910 - 财政年份:1996
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis of Parallel Solution Methods for Scientific Computation
数学科学:科学计算的并行求解方法分析
- 批准号:
9627071 - 财政年份:1996
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Computation and Analysis of Invariant Manifolds and Their Bifurcations
数学科学:不变流形及其分岔的计算与分析
- 批准号:
9404124 - 财政年份:1995
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximation, Estimation, and Computation Properties of Neural Networks and Related Parsimonious Models
数学科学:神经网络和相关简约模型的近似、估计和计算特性
- 批准号:
9505168 - 财政年份:1995
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximation, Estimation, and Computation Properties of Neural Networks and Related Parsimonious Models
数学科学:神经网络和相关简约模型的近似、估计和计算特性
- 批准号:
9505199 - 财政年份:1995
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Mathematical Sciences: "Statistical Computation and Computational Geometry"
数学科学:《统计计算与计算几何》
- 批准号:
9504242 - 财政年份:1995
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Mathematical Sciences: International Conference on Scientific Computation and Differential Equations
数学科学:科学计算和微分方程国际会议
- 批准号:
9416081 - 财政年份:1995
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Mathematical Sciences: Complexity of Real Computation and Zeros of Polynomial Systems
数学科学:实数计算的复杂性和多项式系统的零点
- 批准号:
9424269 - 财政年份:1995
- 资助金额:
$ 7万 - 项目类别:
Standard Grant