Mathematical Sciences: Theories of the Open Channel
数学科学:明渠理论
基本信息
- 批准号:9514145
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-02-15 至 1998-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Eisenberg 9514145 The investigator and his colleagues study the behavior of open channels in membranes, combining experiments and mathematical modeling. The starting place for a theory of open channels is a theory of electrodiffusion. It has long been known that a theory should include the phenomena of shielding or screening, whereby the ions in the ionic atmosphere in and around the channel protein help determine the potential profile of its pore, but mathematical difficulties were severe, and analysis was usually focused on the ionic atmosphere at the surface of the membrane or end of the channel and not the co- and counter-ions within the channel's pore. These difficulties have recently been overcome. The project develops PNP theory to predict the current through the channel, given its structure and distribution of fixed (i.e., permanent) charge. The project uses Poisson's equation to describe how charge on ions and the channel protein determines the electric field; and the Nernst-Planck equations to describe migration and diffusion of ions in gradients of potential and concentration. The study of open channels is an important component of biotechnology because channels have great biological importance in their role as gatekeepers to cells: they are responsible for signaling in the nervous system; they coordinate the contraction of the heart, so it can act as a pump; in general, they are receptors or effectors for many drugs and natural substances that control the life of cells. Channels are wonderful objects to study by high speed computing because they use such simple physics (diffusion) to perform important biological function. The computation of diffusion is much simpler than the computation of the quantum mechanics involved in so many enzymatic functions. Channels are also natural nanotubes and so are of importance in the emerging area of nanostructures, materials and manufacturing. Porin is particularly well suited in this regard since it is available in large quantities, it can be easily modified by the methods of biotechnology, and its structure is known in atomic detail.
艾森伯格9514145 研究人员和他的同事研究膜中开放通道的行为,结合实验和数学建模。 开放通道理论的起点是电扩散理论。人们早就知道,理论应该包括屏蔽或屏蔽现象,由此通道蛋白中和周围的离子气氛中的离子有助于确定其孔的电位分布,但数学困难是严重的,并且分析通常集中在膜表面或通道末端的离子气氛上,而不是共-和反-。离子在通道的孔隙内。 这些困难最近已经克服。 该项目开发PNP理论来预测通过通道的电流,给定其结构和固定(即,永久)充电。该项目使用泊松方程来描述离子和通道蛋白的电荷如何决定电场;以及能斯特-普朗克方程来描述离子在电位和浓度梯度中的迁移和扩散。 开放通道的研究是生物技术的一个重要组成部分,因为通道作为细胞的看门人具有重要的生物学意义:它们负责神经系统中的信号传导;它们协调心脏的收缩,因此它可以作为泵;一般来说,它们是许多药物和控制细胞生命的天然物质的受体或效应器。通道是通过高速计算研究的奇妙对象,因为它们使用如此简单的物理(扩散)来执行重要的生物功能。扩散的计算比涉及如此多的酶功能的量子力学的计算简单得多。 通道也是天然的纳米管,因此在纳米结构、材料和制造的新兴领域具有重要意义。 孔蛋白在这方面特别适合,因为它可以大量获得,它可以通过生物技术方法容易地修饰,并且它的结构在原子细节上是已知的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Eisenberg其他文献
A Dynamic Model of Fusion Pores in Lipid Bilayers
- DOI:
10.1016/j.bpj.2011.11.2741 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Rolf Ryham;Fredric S. Cohen;Robert Eisenberg;Chun Liu - 通讯作者:
Chun Liu
Simultaneous cochlear implantation during resection of a cerebellopontine angle meningioma: case report
桥小脑角脑膜瘤切除术同时植入耳蜗:病例报告
- DOI:
10.1080/14670100.2023.2239513 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Roberts;Richard Ferch;Robert Eisenberg - 通讯作者:
Robert Eisenberg
H-bonds in Crambin: Coherence in an alpha helix
Crambin 中的氢键:α 螺旋中的相干性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Stanley Nicholson;David Minh;Robert Eisenberg - 通讯作者:
Robert Eisenberg
Primary Pulmonary Amyloidosis: An Unusual Case with 14 Years' Survival
- DOI:
10.1378/chest.89.6.889 - 发表时间:
1986-06-01 - 期刊:
- 影响因子:
- 作者:
Robert Eisenberg;Om P. Sharma - 通讯作者:
Om P. Sharma
A Continuum Variational Approach to Vesicle Membrane Modeling
- DOI:
10.1016/j.bpj.2010.12.1237 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Rolf Ryham;Robert Eisenberg;Chun Liu;Fredric Cohen - 通讯作者:
Fredric Cohen
Robert Eisenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Eisenberg', 18)}}的其他基金
Interdisciplinary Workshop Introducing Physicists and Chemists to Ions in Protein Channels
跨学科研讨会向物理学家和化学家介绍蛋白质通道中的离子
- 批准号:
0221738 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Electrodiffusion in lonic Channels Analyzed with the Gummel Iteration
用 Gummel 迭代分析离子通道中的电扩散
- 批准号:
9726338 - 财政年份:1998
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
A Hierarchy of Models of the Open Channel
开放渠道模型的层次结构
- 批准号:
9205688 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Theories of Ionic Movement in Biological Channels
数学科学:生物通道中离子运动的理论
- 批准号:
9012294 - 财政年份:1991
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Sarcoplasmic Reticulum of a Fast Lobster Muscle
快速龙虾肌肉的肌浆网
- 批准号:
8903796 - 财政年份:1989
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Spatial Spread of Current in Structures of Biological Significance
具有生物意义的结构中电流的空间传播
- 批准号:
7618043 - 财政年份:1976
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spatial Spread of Current in Structures of Biological Significance
具有生物意义的结构中电流的空间传播
- 批准号:
7505500 - 财政年份:1975
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Vertex Operators Algebras, Conformal Field Theories, and Geometry
数学科学:顶点算子代数、共形场论和几何
- 批准号:
9622961 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: "Dynamics of Superconducting Vortices and Monopoles in Gauge Theories"
数学科学:“规范理论中的超导涡旋和磁单极子动力学”
- 批准号:
9623463 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Quantum Field Theories and Related Invariants in 3- and 4-Manifold Topology
数学科学:拓扑量子场论和 3 流形和 4 流形拓扑中的相关不变量
- 批准号:
9504423 - 财政年份:1995
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Conformal Field Theories, Mirror Symmetry, and Algebraic Geometry
数学科学:几何共形场论、镜像对称和代数几何
- 批准号:
9401447 - 财政年份:1994
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Behaviour of Vortices and Monopoles in Classical Gauge Theories
数学科学:经典规范理论中涡旋和磁单极子的动力学行为
- 批准号:
9214067 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical investigation of quantized field theories; to support visit by A.D. Mironov, P.N. Lebedev Institute of the Russian Academy of Sciences, Moscow, Russia
量化场论的数学研究;
- 批准号:
150359-1993 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
International: Foreign Researcher (H)
Mathematical Sciences: The Fine Structure of Superstable Theories
数学科学:超稳定理论的精细结构
- 批准号:
9223767 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Conformal Field Theories Associated with the Monster Simple Group
数学科学:与怪物简单群相关的共形场论
- 批准号:
9122030 - 财政年份:1992
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Two-dimensional Topological Field Theories and Complex Cobordism
数学科学:二维拓扑场论和复配边
- 批准号:
9119954 - 财政年份:1992
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Proof-Theoretical Investigations of Theories
数学科学:理论的证明理论研究
- 批准号:
9203443 - 财政年份:1992
- 资助金额:
$ 12万 - 项目类别:
Standard Grant