Numerical Capturing of Multiscale Solutions in Partial Differential Equations
偏微分方程多尺度解的数值捕捉
基本信息
- 批准号:9704976
- 负责人:
- 金额:$ 14.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerical Capturing of Multiscale Solutions in PDEs Thomas Y. Hou Applied Math Caltech Abstract of Proposed Research We propose developing a new finite element method of computing multiscale and multicomponent problems in composite materials and porous media. In this method, the base functions are constructed in such a way that they contain the local microscopic properties of the differential operators. These oscillatory bases are independent from each other and can be constructed independently. In effect, we break a large scale computation into many smaller and independent pieces, which can be carried out perfectly in parallel. Thus, the size of the computation is drastically reduced. Due to this drastic memory saving, numerical computations of practical problems with many small scales, which were previously unobtainable using a traditional finite element method, now become possible using our method. An advantage of our approach is that it can handle general multiscale problems without the requirement of scale separation, a property which is very important for practical applications. Several numerical examples are included to demonstrate this effect. We will perform a careful numerical error analysis of our method. The effect of grid resonance, and geometric singularities of local inclusions, such as corners, cusps, will be analyzed. Effective numerical simulations of multiscale phenomena play an essential role in many engineering and industrial applications. A direct numerical solution of the multiple scale problems is difficult even with modern supercomputers. The major difficulty of direct solutions is the scale of computation. For oil reservoir simulations, it is common that millions of grid blocks are involved, with each block having a dimension of tens of meters, whereas the permeability measured from cores is at a scale of several centimeters. This gives more th an hundred thousands of degrees of freedom per spatial dimension in the computation. Therefore, a tremendous amount of computer memory and CPU time are required, and they can easily exceed the limit of today's computing resources. The goal of this proposed research is to provide a coarsened reservoir model which gives simulation results in close agreement with those of the original fine scale description but at considerable computational savings. Many existing up-scaling methods currently used in the oil industry are based on the homogenization theory with periodic structures and separable scales. There is no guarantee that they work for general random permeability without scale separation. In comparison, our approach is more systematic and general. We are very hopeful that this proposed research will provide an effective alternative to perform oil reservoir simulations.
偏微分方程中多尺度解的数值捕获 Thomas Y. Hou 应用数学加州理工学院拟议研究摘要 我们建议开发一种新的有限元方法来计算复合材料和多孔介质中的多尺度和多组分问题。 在该方法中,基函数的构造方式使得它们包含微分算子的局部微观性质。这些振荡基座彼此独立,可以独立构造。实际上,我们将大规模计算分解为许多较小且独立的部分,这些部分可以完美地并行执行。因此,计算量大大减少。由于这种巨大的内存节省,许多小尺度的实际问题的数值计算以前使用传统的有限元方法无法实现,现在使用我们的方法成为可能。 我们的方法的一个优点是它可以处理一般的多尺度问题,而不需要尺度分离,这一特性对于实际应用非常重要。包括几个数值示例来证明这种效果。我们将对我们的方法进行仔细的数值误差分析。将分析电网共振的影响以及局部夹杂物(例如角、尖点)的几何奇点。 多尺度现象的有效数值模拟在许多工程和工业应用中发挥着重要作用。即使使用现代超级计算机,直接数值求解多尺度问题也很困难。直接解决方案的主要困难是计算规模。 对于油藏模拟,通常涉及数百万个网格块,每个网格块的尺寸为数十米,而岩心测量的渗透率则为几厘米尺度。这在计算中为每个空间维度提供了超过十万个自由度。 因此,需要大量的计算机内存和CPU时间,并且它们很容易超出当今计算资源的限制。这项研究的目标是提供一个粗化的油藏模型,该模型给出的模拟结果与原始精细尺度描述的结果非常一致,但节省了大量的计算量。目前石油工业中使用的许多现有的放大方法都是基于具有周期性结构和可分离尺度的均质化理论。无法保证它们在没有尺度分离的情况下适用于一般随机渗透率。相比之下,我们的方法更加系统化和通用化。 我们非常希望这项研究将为油藏模拟提供有效的替代方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hou其他文献
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
- DOI:
10.1109/tmc.2021.3126449 - 发表时间:
2023 - 期刊:
- 影响因子:7.9
- 作者:
Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
- DOI:
10.1109/tnse.2019.2952764 - 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Chengzhang Li;Shaoran Li;Yongce Chen;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
- DOI:
10.1109/milcom.2008.4753523 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Thomas Hou - 通讯作者:
Thomas Hou
Thomas Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hou', 18)}}的其他基金
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 14.55万 - 项目类别:
Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
- 批准号:
1912654 - 财政年份:2019
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
- 批准号:
1617634 - 财政年份:2016
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
- 批准号:
1613861 - 财政年份:2016
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
- 批准号:
1446478 - 财政年份:2015
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
- 批准号:
1405747 - 财政年份:2014
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
- 批准号:
1318377 - 财政年份:2013
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159138 - 财政年份:2012
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
- 批准号:
1217889 - 财政年份:2012
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
相似海外基金
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
EP/Y014693/1 - 财政年份:2024
- 资助金额:
$ 14.55万 - 项目类别:
Research Grant
2DSPEC - Simulating two-dimensional electronic spectroscopy: Capturing the complexities of photo-induced excitedstate molecular processes
2DSPEC - 模拟二维电子光谱:捕获光诱导激发态分子过程的复杂性
- 批准号:
EP/Y037383/1 - 财政年份:2024
- 资助金额:
$ 14.55万 - 项目类别:
Fellowship
CAREER: Capturing the translation of wave climate to coastal change on rocky shorelines across scales
职业:在不同尺度的岩石海岸线上捕捉波浪气候对沿海变化的转化
- 批准号:
2339542 - 财政年份:2024
- 资助金额:
$ 14.55万 - 项目类别:
Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
- 批准号:
2336189 - 财政年份:2024
- 资助金额:
$ 14.55万 - 项目类别:
Continuing Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
- 批准号:
MR/X035611/1 - 财政年份:2024
- 资助金额:
$ 14.55万 - 项目类别:
Fellowship
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
- 批准号:
2328291 - 财政年份:2023
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306831 - 财政年份:2023
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306830 - 财政年份:2023
- 资助金额:
$ 14.55万 - 项目类别:
Standard Grant
Capturing forgotten voices: Syrian adolescents' experiences of displacement and humanitarian action in Jordan and Lebanon.
捕捉被遗忘的声音:叙利亚青少年在约旦和黎巴嫩的流离失所经历和人道主义行动。
- 批准号:
2885591 - 财政年份:2023
- 资助金额:
$ 14.55万 - 项目类别:
Studentship
Capturing, quantifying, and understanding combinatorial effects in small molecule signaling
捕获、量化和理解小分子信号传导中的组合效应
- 批准号:
10684528 - 财政年份:2023
- 资助金额:
$ 14.55万 - 项目类别: