Floer Homology and Closed Orbits of Hamiltonian Systems
哈密顿系统的弗洛尔同调和闭轨道
基本信息
- 批准号:9802460
- 负责人:
- 金额:$ 5.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Proposal: DMS 9802460 Principal Investigators: Gang Tian and Gang Liu The purpose of this project is to continue the investigation of Liu and Tian on the applications of their construction of relative virtual moduli cycles in Floer homology and the dynamics of Hamiltonian systems on symplectic manifolds. By using this construction, the principal investigators were able to extend Floer homology from the semi-positive case to all closed symplectic manifolds and consequently to solve the non-degenerate Arnold conjecture completely. By using certain refinements of this construction, they established a general relationship between non-vanishing of certain GW-invariants and the existence of closed orbits of Hamiltonian systems. As one of the applications of this, they solved a stabilized version of Weinstein conjecture. Base on these results, the principal investigators propose further investigations on the Arnold conjecture for degenerate case and some other unsettled cases of the Weinstein conjecture. Hamiltonian equations arise from classical mechanics, celestial mechanics and many other physical systems as fundamental equations governing the motions in such systems. The dynamics of Hamiltonian systems describes the evolution of the "classical" world. One of the important steps to understand the dynamics of Hamiltonian systems is to understand their simplest dynamic behavior, the periodical orbits. The basic questions here, known as the Arnold conjecture and the Weinstein conjecture, are about the existence and the number of closed orbits of Hamiltonian systems. Both of these conjectures have been considered as main guiding problems in the subject of symplectic topology. The methods developed by the investigators of this project to solve the non-degenerate Arnold conjecture and stabilized Weinstein conjecture have opened the door for investigating the Arnold conjecture for the degenerate case and the Weinstein conjectur e for general symplectic manifolds.
摘要 提案:DMS 9802460主要研究者:田刚、刘刚 该项目的目的是继续对刘某进行调查, 论相对虚模构造的应用 Floer同调中的循环和上的Hamilton系统的动力学 辛流形 通过使用这种结构,主要 研究人员能够将Floer同源性从半阳性 的情况下,所有封闭辛流形,从而解决 非退化Arnold猜想 通过使用某些改进 在这一结构中,他们建立了一种普遍的关系, 某些GW-不变量的非零性和闭轨的存在性 Hamilton系统的。 作为应用之一,他们解决了一个 韦恩斯坦猜想的稳定版本。 基于这些结果, 主要调查人员建议对阿诺德进行进一步调查 猜想退化的情况和其他一些悬而未决的情况下, 温斯坦猜想。 哈密顿方程起源于经典力学,天体力学 和许多其他物理系统作为基本方程, 在这样的系统中。 哈密顿系统的动力学描述了 “古典”世界的演变。 的重要步骤之一 要理解哈密顿系统的动力学, 最简单的动力学行为,周期轨道。 根本问题 在这里,被称为阿诺德猜想和温斯坦猜想,是 关于哈密顿系统的闭轨的存在性和个数。 这两个问题已被认为是主要的指导问题, 辛拓扑学的主题。 开发的方法 该项目的研究人员解决了非退化阿诺德猜想 并稳定了温斯坦猜想, 退化情形的Arnold猜想和Weinstein猜想 对于一般辛流形。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Tian其他文献
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
- DOI:
10.1016/j.bios.2016.05.055 - 发表时间:
2016 - 期刊:
- 影响因子:12.6
- 作者:
Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding - 通讯作者:
Min Ding
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
- DOI:
10.1016/j.petrol.2021.109526 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c - 通讯作者:
Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
- DOI:
10.3390/rs15020306 - 发表时间:
2023-01 - 期刊:
- 影响因子:5
- 作者:
Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian - 通讯作者:
Gang Tian
Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
- DOI:
10.3390/rs13142804 - 发表时间:
2021-07 - 期刊:
- 影响因子:5
- 作者:
Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan - 通讯作者:
Michele Pipan
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
- DOI:
10.1353/ajm.2017.0042 - 发表时间:
2015-03 - 期刊:
- 影响因子:1.7
- 作者:
Gabriele La Nave;Gang Tian;Zhenlei Zhang - 通讯作者:
Zhenlei Zhang
Gang Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Tian', 18)}}的其他基金
Geometric equations and geometric applications
几何方程和几何应用
- 批准号:
1309359 - 财政年份:2013
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0703985 - 财政年份:2006
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0735963 - 财政年份:2006
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0354620 - 财政年份:2004
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0302744 - 财政年份:2003
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
Investigation on Conformally Compact Einstein Manifolds and Related Problems
共形紧爱因斯坦流形及相关问题的研究
- 批准号:
0202122 - 财政年份:2002
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
- 批准号:
9802479 - 财政年份:1998
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
- 批准号:
9796274 - 财政年份:1997
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
相似海外基金
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Structures in Khovanov-Rozansky homology
Khovanov-Rozansky 同源结构
- 批准号:
2302305 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
- 批准号:
22KJ0912 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The role of reticulon homology domain (RHD) protein and related family members in the sarco(endo)plasmic formation and regulation in the cardiac myocyte
网织同源结构域(RHD)蛋白及相关家族成员在心肌细胞肌(内)质形成和调节中的作用
- 批准号:
488705 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Operating Grants
Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
- 批准号:
2303823 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Continuing Grant
Research Initiation Award: Toward Understanding Persistent Homology in Topological Data Analysis
研究启动奖:理解拓扑数据分析中的持久同源性
- 批准号:
2300360 - 财政年份:2023
- 资助金额:
$ 5.42万 - 项目类别:
Standard Grant