Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
基本信息
- 批准号:9802479
- 负责人:
- 金额:$ 64.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal: DMS-9802479Principal Investigator: Gang TianThe project addresses some fundamental problems from symplectic geometry and Kaehler geometry. The first part concerns the existence of Kaehler-Einstein metrics with positive scalar curvature. These metrics provide solutions of the Einstein equation on Riemannian manifolds. In the second part, the principal investigator (PI) intends to further study new invariants, often refered as GW-invariants, of general symplectic manifolds and find more applications to Hamiltonian systems, symplectic topology and geometry. This part also contains very basic problem of understanding structure of GW-invariants and its possible relation to particular integrable systems. The PI also suggests to study some related nonlinear PDE problems which arise from physics and geometry.Problems in this project were motivated by our desire of probing mathematics of basic physical laws under suitable conditions. For example, GW-invariants were inspired by a sigma model theory coupled with gravity in mathematical physics, and they extend classical enumerative geometry which involves counting curves through a number of points or intersections of curves. The resolutions of these problems will provide new mathematical insights of Einstein equation in general relativity, quantum field theory, mirror symmetry phenomenon in string theory. Our study will also deepen our understanding properties of symplectic manifolds, algebraic manifolds and Calabi-Yau spaces.
摘要项目主要研究辛几何和Kaehler几何中的一些基本问题。第一部分讨论了具有正标量曲率的卡勒-爱因斯坦度量的存在性。这些度量提供了黎曼流形上爱因斯坦方程的解。在第二部分中,首席研究员(PI)打算进一步研究一般辛流形的新不变量,通常称为gw不变量,并在哈密顿系统,辛拓扑和几何中寻找更多的应用。这一部分还包含了理解gw -不变量结构及其与特定可积系统的可能关系的非常基本的问题。PI还建议研究一些相关的非线性偏微分方程问题,这些问题来自物理和几何。这个项目的问题是由我们想在合适的条件下探索基本物理定律的数学的愿望所激发的。例如,gw不变量的灵感来自于数学物理中的sigma模型理论和引力,它们扩展了经典的枚举几何,包括通过许多点或曲线的交叉点来计数曲线。这些问题的解决将为广义相对论中的爱因斯坦方程、量子场论、弦理论中的镜像对称现象提供新的数学见解。我们的研究也将加深我们对辛流形、代数流形和Calabi-Yau空间性质的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Tian其他文献
Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
- DOI:
10.3390/rs13142804 - 发表时间:
2021-07 - 期刊:
- 影响因子:5
- 作者:
Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan - 通讯作者:
Michele Pipan
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
- DOI:
10.1016/j.petrol.2021.109526 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c - 通讯作者:
Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
- DOI:
10.3390/rs15020306 - 发表时间:
2023-01 - 期刊:
- 影响因子:5
- 作者:
Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian - 通讯作者:
Gang Tian
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
- DOI:
10.1016/j.bios.2016.05.055 - 发表时间:
2016 - 期刊:
- 影响因子:12.6
- 作者:
Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding - 通讯作者:
Min Ding
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
- DOI:
10.1353/ajm.2017.0042 - 发表时间:
2015-03 - 期刊:
- 影响因子:1.7
- 作者:
Gabriele La Nave;Gang Tian;Zhenlei Zhang - 通讯作者:
Zhenlei Zhang
Gang Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Tian', 18)}}的其他基金
Geometric equations and geometric applications
几何方程和几何应用
- 批准号:
1309359 - 财政年份:2013
- 资助金额:
$ 64.44万 - 项目类别:
Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0703985 - 财政年份:2006
- 资助金额:
$ 64.44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0735963 - 财政年份:2006
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0354620 - 财政年份:2004
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Low Dimensional Geometry and Monopoles
低维几何和单极子
- 批准号:
0305130 - 财政年份:2003
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0302744 - 财政年份:2003
- 资助金额:
$ 64.44万 - 项目类别:
Continuing Grant
Investigation on Conformally Compact Einstein Manifolds and Related Problems
共形紧爱因斯坦流形及相关问题的研究
- 批准号:
0202122 - 财政年份:2002
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Floer Homology and Closed Orbits of Hamiltonian Systems
哈密顿系统的弗洛尔同调和闭轨道
- 批准号:
9802460 - 财政年份:1998
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
- 批准号:
9796274 - 财政年份:1997
- 资助金额:
$ 64.44万 - 项目类别:
Continuing Grant
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Continuing Grant














{{item.name}}会员




