GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
基本信息
- 批准号:0302744
- 负责人:
- 金额:$ 68.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTGEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONSP.I.: Gang Tian (M.I.T.)This proposal concerns existence and regularity problems of the Einstein equation, the Yang-Mills equation on Riemannian manifolds and pseudo-holomorphic curves, as well as applications of these equations to geometry and topology. For the Einstein equation, we will focus mainly on (1) the existence of its solutions, particularly, K\"ahler-Einstein metrics in complex geometry and (2) behavior of its singular solutions. I will also study the associated K\"ahler-Ricci flow and its soliton-type solutions. The Yang-Mills equation is a nonlinear equation and may have singular solutions. We will study the basic problem how singular solutions behave along their singularity, e.q., the size of singularity. It has been found in my previous works that there is a connection between singularity formation of Yang-Mills fields and classical minimal submanifolds. I intend to explore this more and its related compactness problem for Yang-Mills fields, particularly, the interaction between self-dual solutions the Yang-Mills equation and calibrated geometry. I also intend to continue his study in symplectic geometry. The problems include symplectic isotopy problem in a rational surface and its applications toward classifying symplectic four dimensional spaces, computing well-defined symplectic invariants, such as the Gromov-Witten invariants, constructing new deformation invariants.Problems in this proposal arose naturally from our attempts to understanding nonlinear differential equations from geometry and physics. These equations include static Einstein equation, Yang-Mills fields as well as holomorphic maps. They played a fundamental role in our understanding of nature through mathematical means. They also have found many deep applications in geometry and topology, such as Seiberg-Witten theory, Mirror symmetry of Calabi-Yau spaces. The resolution of these problems will provide mathematical foundations for some physical theories and have profound applications to long-standing mathematical problems. Most natural phenomena are nonlinear and possess singular behaviors. These are reflected in possible singular solutions to the differential equations which describe those phenomena. It is still challenging to have a complete mathematical understanding of these singular solutions. This proposal will address some of these basic problems. I will also try to find more solutions of these nonlinear equations -and apply them to studying basic problems in geometry and topology.
抽象几何微分方程及其应用田刚(M.I.T.)这个建议涉及的存在性和正则性问题的爱因斯坦方程,杨米尔斯方程黎曼流形和伪全纯曲线,以及应用这些方程的几何和拓扑。对于Einstein方程,我们主要讨论(1)它的解的存在性,特别是复几何中的K\“ahler-Einstein度量和(2)它的奇异解的行为。我们还将研究相应的Kahler-Ricci流及其孤子型解。Yang-Mills方程是一个非线性方程,可能有奇异解。我们将研究奇异解沿着其奇异性如何表现的基本问题,例如,奇点的大小。在我以前的工作中发现,杨-米尔斯场的奇点形成与经典极小子流形之间存在着联系。我打算探讨这个更多的和它的相关的紧性问题的杨米尔斯场,特别是,自对偶解之间的相互作用的杨米尔斯方程和校准几何。我也打算继续他的研究辛几何。这些问题包括有理曲面上的辛合痕问题及其在分类辛四维空间、计算定义良好的辛不变量(如Gromov-Witten不变量)、构造新的变形不变量等方面的应用,这些问题的提出是从几何和物理角度理解非线性微分方程的一个自然的尝试。这些方程包括静态爱因斯坦方程、杨-米尔斯场以及全纯映射。它们在我们通过数学手段理解自然界方面发挥了重要作用。它们在几何学和拓扑学中也有着广泛的应用,如Seiberg-Witten理论、Calabi-Yau空间的镜像对称性等。这些问题的解决将为一些物理理论提供数学基础,并对解决长期存在的数学问题有着深远的应用。大多数自然现象都是非线性的,具有奇异性。这些都反映在描述这些现象的微分方程可能的奇异解。对这些奇异解有一个完整的数学理解仍然是具有挑战性的。这项建议将解决其中一些基本问题。我也将尝试找到这些非线性方程的更多解-并将其应用于几何和拓扑学中的基本问题的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Tian其他文献
Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
- DOI:
10.3390/rs13142804 - 发表时间:
2021-07 - 期刊:
- 影响因子:5
- 作者:
Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan - 通讯作者:
Michele Pipan
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
- DOI:
10.1016/j.petrol.2021.109526 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c - 通讯作者:
Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
- DOI:
10.3390/rs15020306 - 发表时间:
2023-01 - 期刊:
- 影响因子:5
- 作者:
Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian - 通讯作者:
Gang Tian
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
- DOI:
10.1016/j.bios.2016.05.055 - 发表时间:
2016 - 期刊:
- 影响因子:12.6
- 作者:
Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding - 通讯作者:
Min Ding
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
- DOI:
10.1353/ajm.2017.0042 - 发表时间:
2015-03 - 期刊:
- 影响因子:1.7
- 作者:
Gabriele La Nave;Gang Tian;Zhenlei Zhang - 通讯作者:
Zhenlei Zhang
Gang Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Tian', 18)}}的其他基金
Geometric equations and geometric applications
几何方程和几何应用
- 批准号:
1309359 - 财政年份:2013
- 资助金额:
$ 68.94万 - 项目类别:
Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0703985 - 财政年份:2006
- 资助金额:
$ 68.94万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0735963 - 财政年份:2006
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0354620 - 财政年份:2004
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Low Dimensional Geometry and Monopoles
低维几何和单极子
- 批准号:
0305130 - 财政年份:2003
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Investigation on Conformally Compact Einstein Manifolds and Related Problems
共形紧爱因斯坦流形及相关问题的研究
- 批准号:
0202122 - 财政年份:2002
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Floer Homology and Closed Orbits of Hamiltonian Systems
哈密顿系统的弗洛尔同调和闭轨道
- 批准号:
9802460 - 财政年份:1998
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
- 批准号:
9802479 - 财政年份:1998
- 资助金额:
$ 68.94万 - 项目类别:
Continuing Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
- 批准号:
9796274 - 财政年份:1997
- 资助金额:
$ 68.94万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Partial Differential Equations, geometric aspects and applications
偏微分方程、几何方面和应用
- 批准号:
DE230100954 - 财政年份:2023
- 资助金额:
$ 68.94万 - 项目类别:
Discovery Early Career Researcher Award
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2022
- 资助金额:
$ 68.94万 - 项目类别:
Discovery Grants Program - Individual
RUI: Geometric Optimization Involving Partial Differential Equations
RUI:涉及偏微分方程的几何优化
- 批准号:
2208373 - 财政年份:2022
- 资助金额:
$ 68.94万 - 项目类别:
Standard Grant
Geometric Analysis: Investigating the Einstein Equations and Other Partial Differential Equations
几何分析:研究爱因斯坦方程和其他偏微分方程
- 批准号:
2204182 - 财政年份:2022
- 资助金额:
$ 68.94万 - 项目类别:
Continuing Grant
Geometric Aspects of Complex Differential Equations
复微分方程的几何方面
- 批准号:
EP/W012251/1 - 财政年份:2022
- 资助金额:
$ 68.94万 - 项目类别:
Research Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 68.94万 - 项目类别:
Continuing Grant