Investigation on Conformally Compact Einstein Manifolds and Related Problems

共形紧爱因斯坦流形及相关问题的研究

基本信息

  • 批准号:
    0202122
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT DMS - 0202122.The goal of this project is to study the geometry of conformallycompact Einstein manifolds and other related problems.These manifolds were first studied by mathematicians about tenyears ago. New ideas and stimuli came up a couple of years ago when it was found that they are the mathematical framework for the new proposal ADS/CFT correspondence in string theory. Therefore the study of conformally compact Einstein manifolds has even become important for physics. The author has done work on the geometry of such manifolds, but there remain many problems to be studied. In the future the author hopes to tackle the problem of existence.If the conformal infinity has enough symmetry one hopes to find explicitsolutions. The global uniqueness is also a challenging problem andrequires new ideas. Many recent results have shown that there is aprofound relationship between the global geometry of ambient manifoldsand the conformal geometry of the boundary. The author intends to further explore this direction.This proposal studies a class of geometric objects called conformallycompact Einstein manifolds. They are not only mathematically interesting,but also important for physics because they serve as the framework fora deep correspondence in string theory. The author will study variousgeometric aspects of these manifolds as well as problems arising inphysics. The study of this special class of noncompact manifolds whosegeometry at infinity is well under control will also provide insightsand ideas to study more general noncompact manifolds.
摘要 DMS - 0202122。该项目的目标是研究共形紧致爱因斯坦流形的几何形状和其他相关问题。这些流形是大约十年前由数学家首次研究的。几年前,当人们发现它们是弦理论中新提案 ADS/CFT 对应的数学框架时,出现了新的想法和刺激。因此,共形紧致爱因斯坦流形的研究对于物理学来说甚至变得很重要。作者已经对此类流形的几何进行了研究,但仍有许多问题有待研究。未来作者希望能够解决存在性问题。如果共形无穷大有足够的对称性,我们希望能找到明确的解。全球独特性也是一个具有挑战性的问题,需要新的想法。最近的许多结果表明,环境流形的全局几何形状与边界的共形几何形状之间存在着深刻的关系。作者打算进一步探索这个方向。本提案研究一类称为共形紧致爱因斯坦流形的几何对象。它们不仅在数学上很有趣,而且对物理学也很重要,因为它们是弦理论中深层对应的框架。作者将研究这些流形的各个几何方面以及物理学中出现的问题。对这种特殊类型的非紧流形的研究,其无限远处的几何形状得到很好的控制,也将为研究更一般的非紧流形提供见解和想法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Tian其他文献

Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
  • DOI:
    10.3390/rs13142804
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan
  • 通讯作者:
    Michele Pipan
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
  • DOI:
    10.1016/j.petrol.2021.109526
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c
  • 通讯作者:
    Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
  • DOI:
    10.3390/rs15020306
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian
  • 通讯作者:
    Gang Tian
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
  • DOI:
    10.1016/j.bios.2016.05.055
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding
  • 通讯作者:
    Min Ding
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
  • DOI:
    10.1353/ajm.2017.0042
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gabriele La Nave;Gang Tian;Zhenlei Zhang
  • 通讯作者:
    Zhenlei Zhang

Gang Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Tian', 18)}}的其他基金

Geometric equations and geometric applications
几何方程和几何应用
  • 批准号:
    1309359
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometry and Analysis of Manifolds
流形的几何与分析
  • 批准号:
    0804095
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
  • 批准号:
    0703985
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
  • 批准号:
    0735963
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
  • 批准号:
    0354620
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Low Dimensional Geometry and Monopoles
低维几何和单极子
  • 批准号:
    0305130
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
  • 批准号:
    0302744
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Floer Homology and Closed Orbits of Hamiltonian Systems
哈密​​顿系统的弗洛尔同调和闭轨道
  • 批准号:
    9802460
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
  • 批准号:
    9802479
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
  • 批准号:
    9796274
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Toward a general thoery of statistical and stochastic fields using fermion point processes and conformally invariant SLE curves
使用费米子点过程和共形不变 SLE 曲线建立统计和随机场的一般理论
  • 批准号:
    19K03674
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Second order (conformally) superintegrable systems: classification, transformations and applications
二阶(共形)超可积系统:分类、转换和应用
  • 批准号:
    353063958
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Existence problem of conformally Kahler Einstein-Maxwell metrics
共形卡勒爱因斯坦-麦克斯韦度量的存在性问题
  • 批准号:
    17K05218
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conformally invariant Higgs gravity
共形不变的希格斯引力
  • 批准号:
    16K05327
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Discrete models and conformally invariant limits
离散模型和共形不变极限
  • 批准号:
    1512853
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
  • 批准号:
    476253-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Research for duality and transformations of generic conformally flat hypersurfaces.
通用共形平坦超曲面的对偶性和变换研究。
  • 批准号:
    26400076
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spherical Collapse under the Mean Curvature Flow in Conformally Euclidean Metrics
共形欧几里得度量中平均曲率流下的球形塌陷
  • 批准号:
    443504-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了