Geometry and Analysis of Manifolds
流形的几何与分析
基本信息
- 批准号:0804095
- 负责人:
- 金额:$ 83.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for DMS-0804095This proposal concerns geometric and analytic problems which arise from geometry and physics. The PI will continue his study on existence problem and singularity formation of the Einstein equation and the Yang-Mills equation. For the Einstein equation, the PI will focus mainly in dimension 4 or in the Kahler case. He will also study related Ricci flow and its singularity development and its interaction with classifying projective manifolds in algebraic geometry. Corresponding problems for self-dual metrics in dimension 4 will be also studied. For the Yang-Mills equation, the PI will focus on how to compactify spaces of its self-dual solutions and their applications to constructing new invariants. The PI found before that the Yang-Mills fields forms singularity along classical minimal surfaces like soap bubbles or subvarieties. He likes to explore this further and particularly, the interaction between self-dual Yang-Mills fields and calibrated geometry. The PI also intends to continue his study on problems in symplectic geometry, including deforming symplectic surfaces in 4-manifolds and constructing new deformation invariants.The Einstein and the Yang-Mills equations have played a fundamental role in our study of physics and geometry and topology in last few decades. Perelman's solution for the Poincare conjecture is an excellent example. Important and central problems include studying when one can solve those equations, what properties of those solutions found, how they develop singular behaviors. It is also important to understand the connection between these solutions and other branches of mathematics, such as, algebraic geometry and differential topology. The resolution of these problems will provide new profound understanding geometry of underlying spaces.The problems involved in this research project were also inspired by the study of the string theory in physics. Through this research project, the PI also intends to develop new tools for studying curved spaces, symplectic geometry and provide new mathematical foundation for some physical theories.
DMS-0804095摘要本提案涉及几何和物理中出现的几何和解析问题。PI将继续研究Einstein方程和Yang-Mills方程的存在性问题和奇异性形成。对于爱因斯坦方程,PI将主要集中在4维或卡勒情况下。他还将研究相关的里奇流及其奇异性发展及其与代数几何中的投影流形分类的相互作用。相应的问题,自对偶度量在4维也将进行研究。对于Yang-Mills方程,PI将专注于如何紧化其自对偶解的空间及其在构造新不变量方面的应用。PI之前发现杨-米尔斯场沿着沿着经典极小曲面(如肥皂泡或子曲面)形成奇点。他喜欢进一步探索这一点,特别是自对偶杨米尔斯场和校准几何之间的相互作用。研究者还打算继续研究辛几何中的问题,包括变形4-流形中的辛曲面和构造新的变形不变量。爱因斯坦方程和杨-米尔斯方程在过去几十年中在我们的物理学、几何学和拓扑学研究中发挥了基础作用。佩雷尔曼对庞加莱猜想的解答就是一个很好的例子。重要的和中心的问题包括研究什么时候可以解决这些方程,这些解决方案的性质,他们如何发展奇异行为。 理解这些解与其他数学分支之间的联系也很重要,例如代数几何和微分拓扑。这些问题的解决将为我们提供对潜在空间几何的新的深刻理解。本研究项目所涉及的问题也受到了物理学中弦理论研究的启发。通过这个研究项目,PI还打算开发研究弯曲空间,辛几何的新工具,并为一些物理理论提供新的数学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Tian其他文献
Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
- DOI:
10.3390/rs13142804 - 发表时间:
2021-07 - 期刊:
- 影响因子:5
- 作者:
Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan - 通讯作者:
Michele Pipan
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
- DOI:
10.1016/j.petrol.2021.109526 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c - 通讯作者:
Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
- DOI:
10.3390/rs15020306 - 发表时间:
2023-01 - 期刊:
- 影响因子:5
- 作者:
Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian - 通讯作者:
Gang Tian
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
- DOI:
10.1016/j.bios.2016.05.055 - 发表时间:
2016 - 期刊:
- 影响因子:12.6
- 作者:
Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding - 通讯作者:
Min Ding
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
- DOI:
10.1353/ajm.2017.0042 - 发表时间:
2015-03 - 期刊:
- 影响因子:1.7
- 作者:
Gabriele La Nave;Gang Tian;Zhenlei Zhang - 通讯作者:
Zhenlei Zhang
Gang Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Tian', 18)}}的其他基金
Geometric equations and geometric applications
几何方程和几何应用
- 批准号:
1309359 - 财政年份:2013
- 资助金额:
$ 83.02万 - 项目类别:
Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0703985 - 财政年份:2006
- 资助金额:
$ 83.02万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0735963 - 财政年份:2006
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
- 批准号:
0354620 - 财政年份:2004
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Low Dimensional Geometry and Monopoles
低维几何和单极子
- 批准号:
0305130 - 财政年份:2003
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
- 批准号:
0302744 - 财政年份:2003
- 资助金额:
$ 83.02万 - 项目类别:
Continuing Grant
Investigation on Conformally Compact Einstein Manifolds and Related Problems
共形紧爱因斯坦流形及相关问题的研究
- 批准号:
0202122 - 财政年份:2002
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Floer Homology and Closed Orbits of Hamiltonian Systems
哈密顿系统的弗洛尔同调和闭轨道
- 批准号:
9802460 - 财政年份:1998
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
- 批准号:
9802479 - 财政年份:1998
- 资助金额:
$ 83.02万 - 项目类别:
Continuing Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
- 批准号:
9796274 - 财政年份:1997
- 资助金额:
$ 83.02万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
- 批准号:
2247784 - 财政年份:2023
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Metric geometry and analysis on Einstein manifolds
爱因斯坦流形的度量几何和分析
- 批准号:
2304818 - 财政年份:2023
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 83.02万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometric analysis and comparison geometry on weighted manifolds
加权流形上的几何分析和比较几何
- 批准号:
20J11328 - 财政年份:2020
- 资助金额:
$ 83.02万 - 项目类别:
Grant-in-Aid for JSPS Fellows
International Conference on Analysis and Geometry on Graphs and Manifolds
图与流形分析与几何国际会议
- 批准号:
1707722 - 财政年份:2017
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Geometry and Analysis of Differentiable Manifolds
可微流形的几何与分析
- 批准号:
1607091 - 财政年份:2016
- 资助金额:
$ 83.02万 - 项目类别:
Continuing Grant
The geometry and asymptotic analysis of hyper-Kaehler manifolds
超凯勒流形的几何与渐近分析
- 批准号:
26887031 - 财政年份:2014
- 资助金额:
$ 83.02万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Geometry and Analysis on Nonholonomic structures on manifolds
流形上非完整结构的几何与分析
- 批准号:
1406193 - 财政年份:2014
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
The Geometry and Global Analysis of Arithmetic Manifolds
算术流形的几何和全局分析
- 批准号:
1509331 - 财政年份:2014
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant
Geometry and Analysis on Calabi-Yau and Hermitian Manifolds
Calabi-Yau 和 Hermitian 流形的几何与分析
- 批准号:
1308988 - 财政年份:2013
- 资助金额:
$ 83.02万 - 项目类别:
Standard Grant