Geometric equations and geometric applications

几何方程和几何应用

基本信息

  • 批准号:
    1309359
  • 负责人:
  • 金额:
    $ 48.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

This project concerns existence and regularity problems of curvature equations in Riemannian geometry. These equations include the Ricci flow, the Einstein equation, the Yang-Mills equation. For Ricci flow, the PI will focus on (1) finite-time singularity formation for its solutions in Kahler geometry; (2) The interaction between the singularity and geometry of the underlying spaces; (3) long-time behavior of the solutions. The PI will study the pluri-closed flow, a new curvature flow which arises from complex geometry. He will develop its analytic theory and singularity formation. It has been found that there is a deep connection between this flow and the renormalization group flow of the nonlinear sigma model with B-field. The PI will explore this connection further and give new mathematical insights for the duality in the string theory. For the Einstein equation, the PI will focus mainly on the existence of its solutions and behavior of its singular solutions. The case for dimension 4 is particularly interesting. Self-dual metrics in dimension 4 will be also studied. They can be used to study the geometry and topology of underlying spaces. The PI will also study how the symplectic flow develops finite-time singularity in dimension 4 as well as other fundamental problems in symplectic geometry. The problems include isotopy of symplectic surfaces and its applications to classifying symplectic 4-manifolds. The PI will also continue his construction of new invariants for symplectic manifolds which admit a Hamiltonian S^1-action. These invariants are constructed by studying the Yang-Mills equation coupled with Cauchy-Riemann equation. These invariants and their extensions are inspired by the topological field theories in mathematical physics and provide new mathematical foundations for physical theories. Problems in this project arose naturally from the attempts to understanding nonlinear differential equations from geometry and physics. These equations involve curvature and include Ricci flow, static Einstein equation. They played a fundamental role in understanding of nature through mathematical means. They also have found many deep applications in geometry and topology, such as the topology of low dimensional spaces. The resolution of these problems will provide mathematical foundations for some physical theories and will have profound applications to long-standing mathematical problems. Most natural phenomena are nonlinear and possess singular behaviors. These are reflected in possible singular solutions to the curvature equations which describe those phenomena. It is still challenging to have a complete mathematical understanding of these singular solutions. This project will address some of these basic problems.
本课题研究黎曼几何中曲率方程的存在性和正则性问题。这些方程包括里奇流,爱因斯坦方程,杨-米尔斯方程。对于Ricci流,PI将重点关注(1)Kahler几何解的有限时间奇点形成;(2)奇点与底层空间几何的相互作用;(3)解的长期行为。PI将研究多闭流,这是一种由复杂几何结构产生的新型曲率流。他将发展它的解析理论和奇点形成。研究发现,该流与具有b场的非线性sigma模型的重整化群流之间存在着深刻的联系。PI将进一步探索这种联系,并为弦理论中的对偶性提供新的数学见解。对于爱因斯坦方程,PI将主要关注其解的存在性及其奇异解的行为。维4的情况特别有趣。我们还将研究四维的自对偶度量。它们可以用来研究底层空间的几何和拓扑结构。PI还将研究辛流如何在4维中发展有限时间奇点以及辛几何中的其他基本问题。问题包括辛曲面的同位素及其在辛4流形分类中的应用。PI也将继续他对辛流形的新不变量的构造,这些流形承认哈密顿S^1作用。这些不变量是通过研究Yang-Mills方程与Cauchy-Riemann方程的耦合来构造的。这些不变量及其扩展受到数学物理拓扑场论的启发,为物理理论提供了新的数学基础。这个项目中的问题自然来自于试图从几何和物理上理解非线性微分方程。这些方程涉及曲率,包括里奇流,静态爱因斯坦方程。它们在通过数学手段理解自然方面发挥了重要作用。他们还在几何和拓扑学中发现了许多深入的应用,例如低维空间的拓扑学。这些问题的解决将为某些物理理论提供数学基础,并将对长期存在的数学问题产生深远的应用。大多数自然现象是非线性的,具有奇异的行为。这些都反映在描述这些现象的曲率方程的可能的奇异解中。对这些奇异解有一个完整的数学理解仍然是一个挑战。这个项目将解决其中的一些基本问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Tian其他文献

Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
  • DOI:
    10.3390/rs13142804
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan
  • 通讯作者:
    Michele Pipan
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
  • DOI:
    10.1016/j.petrol.2021.109526
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c
  • 通讯作者:
    Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
  • DOI:
    10.3390/rs15020306
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian
  • 通讯作者:
    Gang Tian
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
  • DOI:
    10.1016/j.bios.2016.05.055
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding
  • 通讯作者:
    Min Ding
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
  • DOI:
    10.1353/ajm.2017.0042
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gabriele La Nave;Gang Tian;Zhenlei Zhang
  • 通讯作者:
    Zhenlei Zhang

Gang Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Tian', 18)}}的其他基金

Geometry and Analysis of Manifolds
流形的几何与分析
  • 批准号:
    0804095
  • 财政年份:
    2008
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
  • 批准号:
    0703985
  • 财政年份:
    2006
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
  • 批准号:
    0735963
  • 财政年份:
    2006
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
  • 批准号:
    0354620
  • 财政年份:
    2004
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Low Dimensional Geometry and Monopoles
低维几何和单极子
  • 批准号:
    0305130
  • 财政年份:
    2003
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
  • 批准号:
    0302744
  • 财政年份:
    2003
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Continuing Grant
Investigation on Conformally Compact Einstein Manifolds and Related Problems
共形紧爱因斯坦流形及相关问题的研究
  • 批准号:
    0202122
  • 财政年份:
    2002
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Floer Homology and Closed Orbits of Hamiltonian Systems
哈密​​顿系统的弗洛尔同调和闭轨道
  • 批准号:
    9802460
  • 财政年份:
    1998
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
  • 批准号:
    9802479
  • 财政年份:
    1998
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Continuing Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
  • 批准号:
    9796274
  • 财政年份:
    1997
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Continuing Grant

相似国自然基金

非线性发展方程及其吸引子
  • 批准号:
    10871040
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
大气、海洋科学中偏微分方程和随机动力系统的研究
  • 批准号:
    10801017
  • 批准年份:
    2008
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
  • 批准号:
    22KF0073
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Partial Differential Equations, geometric aspects and applications
偏微分方程、几何方面和应用
  • 批准号:
    DE230100954
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Discovery Early Career Researcher Award
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
  • 批准号:
    23K03175
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
Geometric scattering methods for the conformal Einstein field equations
共形爱因斯坦场方程的几何散射方法
  • 批准号:
    EP/X012417/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Research Grant
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
  • 批准号:
    2305038
  • 财政年份:
    2023
  • 资助金额:
    $ 48.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了