Low Dimensional Geometry and Monopoles

低维几何和单极子

基本信息

  • 批准号:
    0305130
  • 负责人:
  • 金额:
    $ 10.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

PROPOSAL DMS-0305130LOW-DIMENSIONAL GEOMETRY AND MONOPOLESP.Is: Yann Rollin, Gang TianABSTRACTThe aim of the proposed project is to study a manifold with boundary, andsome additional structure, in relation with the boundary values of thestructure. This generic framework is a very natural approach to manyimportant questions of differential geometry. Some typical cases are thoseof contact structures fillable by symplectic forms, complex geometry andCauchy-Riemann boundary, Einstein geometry and conformal infinity. It isinteresting to study how deformation theory of the boundary inducesdeformations of a filling. This problem is often related to some positivefrequency condition, which is of particular interest for physicists. Thiswill be used to study singular Yang-Mills connections of (a conjectural)Donaldson theory on Calabi-Yau 3-manifolds. More generally, we look at thepicture of a moduli space on the manifold which projects on acorresponding moduli space defined on the boundary. Whenever it can beshown that the projection has a finite nonzero degree in some sense, weobtain a powerfull tool to prove the existence of fillings. Another way totackle the questions of existence is to develop gluing theorems betweenmoduli spaces. Some applications of gluing for Seiberg-Witten equationsare already being developped thus giving new perspectives on contactgeometry.A physical theory is defined by a configuration space, together withobjects (for example a metric) verifying particular equations.The state of a physical system is constrained by its configuration onthe boundary of the space, or, at infinity. Therefore, it is anatural question to ask wether a theory is rich or empty: is itpossible to find a physical system with a given behavior on theboundary, and if so, do we have many solutions? In other words is thesystem soft or rigid? Beyond the physical flavor, this approach, knownas a field theory, has deep implications in mathematics. First, it isrequired to elaborate original tools in analysis, called moduli spacetheories, that have their own beauty. Secondly, the method relatesvery different problems. To illustrate that, we mention the followingsituation: we consider a 3-dimensional space (it could be the3-dimensional sphere) bounding a 4-dimensional space (like the ballinside the sphere). Then, we look at knots on the boundary (they couldbe strands of DNA). These knots can be thought of as the boundary ofa surface lying into the 4-dimensional space. Then, it can be shownthat there is a subtle relation between the knot theory in dimension 3and the theory of surfaces lying in a 4-dimensional space.
提案DMS-0305130低维几何和单极子是:杨罗林,田刚摘要该项目的目的是研究一个流形的边界,和一些额外的结构,与边界值的结构。这个通用的框架是一个非常自然的方法来解决微分几何的许多重要问题。一些典型的情况是那些接触结构可填充辛形式,复杂的几何和Cauchy-Riemann边界,爱因斯坦几何和共形无穷大。边界变形理论如何引起充填体的变形是一个值得研究的问题。这个问题经常与一些正的自由度条件有关,这对物理学家来说是特别感兴趣的。这将被用来研究Calabi-Yau三维流形上的(一个代数)唐纳森理论的奇异Yang-Mills联络.更一般地说,我们来看看流形上的模空间投影在边界上定义的相应模空间上的图像。只要在某种意义下投影有有限个非零度,我们就得到了证明填充存在性的有力工具。另一种解决存在性问题的方法是发展模空间之间的胶合定理。Seiberg-Witten方程的胶合的一些应用已经被开发,从而给接触几何带来了新的视角。物理理论由位形空间以及验证特定方程的对象(例如度量)定义。物理系统的状态由其在空间边界或无穷远处的位形约束。因此,问一个理论是丰富的还是空洞的是一个自然的问题:是否有可能找到一个在边界上具有给定行为的物理系统,如果有,我们有很多解吗?换句话说,这东西是软的还是硬的?除了物理学的味道,这种方法,被称为场论,在数学中有着深刻的含义。首先,它需要精心制作原始的分析工具,称为模空间理论,有自己的美丽。第二,这种方法涉及非常不同的问题。为了说明这一点,我们提到以下情况:我们考虑一个3维空间(它可以是3维球体)包围一个4维空间(就像球体旁边的球)。然后,我们看看边界上的结(它们可能是DNA链)。这些节点可以被认为是一个表面的边界,位于四维空间。由此可见,三维纽结理论与四维曲面理论之间存在着微妙的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Tian其他文献

Multi-Frequency GPR Data Fusion with Genetic Algorithms for Archaeological Prospection
考古勘探中多频探地雷达数据与遗传算法的融合
  • DOI:
    10.3390/rs13142804
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wenke Zhao;Lin Yuan;Emanuele Forte;Guoze Lu;Gang Tian;Michele Pipan
  • 通讯作者:
    Michele Pipan
Annular corrosion risk analysis of gas injection in CO2 flooding and development of oil-based annulus protection fluid
CO2驱注气环空腐蚀风险分析及油基环空保护液开发
  • DOI:
    10.1016/j.petrol.2021.109526
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dezhi Zeng;Baojun Dong;Sisong Zhang;Yonggang Yi;Zhiyao Huang;Gang Tian;Huiyong Yu;Yicheng Sun c
  • 通讯作者:
    Yicheng Sun c
Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data
机载重力和磁力数据对东南极洲甘布尔采夫冰下山脉的构造影响
  • DOI:
    10.3390/rs15020306
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Guochao Wu;Fausto Ferraccioli;Wenna Zhou;Yuan Yuan;Jinyao Gao;Gang Tian
  • 通讯作者:
    Gang Tian
Indirect electrochemical detection for total bile acids in human serum
人血清中总胆汁酸的间接电化学检测
  • DOI:
    10.1016/j.bios.2016.05.055
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Xiaoqing Zhang;Mingsong Zhu;Biao Xu;Yue Cui;Gang Tian;Zhenghu Shi;Min Ding
  • 通讯作者:
    Min Ding
Bounding Diameter Of Singular Kähler Metric
奇异凯勒度量的边界直径
  • DOI:
    10.1353/ajm.2017.0042
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gabriele La Nave;Gang Tian;Zhenlei Zhang
  • 通讯作者:
    Zhenlei Zhang

Gang Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Tian', 18)}}的其他基金

Geometric equations and geometric applications
几何方程和几何应用
  • 批准号:
    1309359
  • 财政年份:
    2013
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
Geometry and Analysis of Manifolds
流形的几何与分析
  • 批准号:
    0804095
  • 财政年份:
    2008
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
  • 批准号:
    0703985
  • 财政年份:
    2006
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
  • 批准号:
    0735963
  • 财政年份:
    2006
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Heat Equations and Geometric Flows in Riemannian and Kaehler Geometry
FRG:合作研究:黎曼几何和凯勒几何中的热方程和几何流
  • 批准号:
    0354620
  • 财政年份:
    2004
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
GEOMETRIC DIFFERENTIAL EQUATIONS AND APPLICATIONS
几何微分方程及应用
  • 批准号:
    0302744
  • 财政年份:
    2003
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
Investigation on Conformally Compact Einstein Manifolds and Related Problems
共形紧爱因斯坦流形及相关问题的研究
  • 批准号:
    0202122
  • 财政年份:
    2002
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Floer Homology and Closed Orbits of Hamiltonian Systems
哈密​​顿系统的弗洛尔同调和闭轨道
  • 批准号:
    9802460
  • 财政年份:
    1998
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Nonlinear Problems in Symplectic Geometry and Complex Geometry
辛几何和复几何中的非线性问题
  • 批准号:
    9802479
  • 财政年份:
    1998
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
  • 批准号:
    9796274
  • 财政年份:
    1997
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
A Comparative Framework for Modeling the Low-Dimensional Geometry of Neural Population States
神经群体状态低维几何建模的比较框架
  • 批准号:
    10007243
  • 财政年份:
    2020
  • 资助金额:
    $ 10.61万
  • 项目类别:
Design Methodology of Differential Geometry and Mechanical Function on Low-Dimensional Carbon Nano Materials Considering Hierarchy of Lattice Defects
考虑晶格缺陷层次的低维碳纳米材料微分几何和力学函数设计方法
  • 批准号:
    20K04174
  • 财政年份:
    2020
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
  • 批准号:
    2283616
  • 财政年份:
    2019
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Studentship
Biology, Analysis, Geometry, Energies, Links: A Program on Low-dimensional Topology, Geometry, and Applications
生物学、分析、几何、能量、链接:低维拓扑、几何和应用程序
  • 批准号:
    1931930
  • 财政年份:
    2019
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology
接触几何、弗洛尔理论和低维拓扑之间的相互作用
  • 批准号:
    1907654
  • 财政年份:
    2019
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Conference on low-dimensional topology and geometry
低维拓扑与几何会议
  • 批准号:
    1707524
  • 财政年份:
    2017
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
  • 批准号:
    1663870
  • 财政年份:
    2016
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Geometry and Dynamics in Low Dimensional Topology
低维拓扑中的几何和动力学
  • 批准号:
    1607512
  • 财政年份:
    2016
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了