Signal Transduction in Root Gravitropism

根向地性中的信号转导

基本信息

  • 批准号:
    9874445
  • 负责人:
  • 金额:
    $ 23.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

Gravity is a fundamental signal that regulates plant growth and form. Despite its importance to plant success, the cellular and molecular events whereby higher plants sense and respond to the gravity signal are essentially unknown. Roots offer an almost unique advantage for studying these events in that sensing and response occur in well defined, spatially distinct regions. It is thought that in the root gravity is perceived in the columella cells of the root cap. These cells then generate a signal that is translocated to the growth zone. This signal then elicits asymmetrical growth through a mechanism that may involve redistributions of auxin, H+ and Ca2+. The events in the columella cells that lead to gravity perception remain poorly understood. In a widely accepted model for the initial process of gravity sensing (the starch statolith hypothesis), the settling of amyloplasts in the columella cells initiates the signaling systems that lead to gravity perception. However, the molecular components of the gravity perception machinery in the cap cells remain essentially unknown. This signaling system must translate sedimentation of statoliths to a cellular signal encoding the direction of gravity. Changes in cytoplasmic pH and columella cell wall Ca2+ and pH have been shown to occur rapidly after gravistimulation of the root of Arabidopsis thaliana. This rapid induction of ion fluxes suggests activation of ion transporters that are closely associated with the initial gravity sensing events. Inhibition of these changes in Ca2+ or pH also inhibits the graviresponse of the root, suggesting they are required for the gravitropic signaling processes of the root cap to proceed. The goal of this research is therefore to define how these ion fluxes are activated in the gravity sensing cells of the root cap using Arabidopsis thaliana as a model system. Understanding how gravity leads to the activation of the ion transporters responsible for these fluxes should provide insight into some of the initial molecular changes that encode the gravity signal in the columella cells of the root cap.Several approaches to this problem will be investigated:(1) H+, Ca2+ and K+ fluxes will be monitored in the cytoplasm, cell walls and medium around columella cells in the intact gravistimulated root cap. These ionic changes will be monitored in living, graviresponding roots using a range of novel, fluorescent, ion imaging probes.(2) The activities of cytoplasmic regulators of signaling or ion transport activities, such as second messengers and the actin and tubulin cytoskeleton, will be altered by application of inhibitors and activators to the columella cells. The effect of these factors on inhibiting or mimicking the gravitational regulation of H+ and Ca2+ fluxes will then be assessed.(3) As there is extensive evidence for a role of calmodulin in ion transporter regulation as well as in the graviresponse, calmodulin activity will be manipulated and its effect on the gravistimulated ion fluxes monitored. In addition, a novel green fluorescent protein-based indicator of calmodulin activity will be used to image potential gravity-induced calmodulin activation domains within the columella cell cytoplasm.(4) In order to test the starch statolith model of gravity perception, laser tweezers will be used to displace amyloplasts in the columella cells in non-gravity stimulated roots. Gravity-like effects on the regulation of H+ and Ca2+ fluxes will then be assessed. Induction of a gravity-like activation of columella cell ion transport by amyloplast displacement would strongly support the starch statolith model for gravity perception in the Arabidopsis root cap.Results from this research will extend the understanding of the gravity sensing machinery used by plants. In particular, these investigations will help identify molecular candidates for the initial elements of the plant gravity sensing system of the root.
重力是调节植物生长和形态的基本信号。尽管重力信号对植物的成功很重要,但高等植物感知和响应重力信号的细胞和分子事件基本上是未知的。根为研究这些事件提供了几乎独特的优势,因为感知和响应发生在明确的、空间上不同的区域。据认为,在根中重力是在根冠的小柱细胞中感知的。然后这些细胞产生信号并转移到生长区。然后,该信号通过可能涉及生长素、H+ 和 Ca2+ 重新分配的机制引发不对称生长。导致重力感知的小柱细胞中的事件仍然知之甚少。在重力感应初始过程的广泛接受的模型中(淀粉平衡石假说),淀粉体在小柱细胞中的沉降启动了导致重力感知的信号系统。然而,帽细胞中重力感知机制的分子成分仍然基本上未知。该信号系统必须将平衡石的沉降转化为编码重力方向的细胞信号。拟南芥根受重力刺激后,细胞质 p​​H 值和小柱细胞壁 Ca2+ 和 pH 值会迅速发生变化。这种离子通量的快速诱导表明离子转运蛋白的激活与初始重力感应事件密切相关。抑制 Ca2+ 或 pH 的这些变化也会抑制根的重力反应,表明它们是根冠的重力信号过程进行所必需的。因此,本研究的目标是使用拟南芥作为模型系统来定义如何在根盖的重力感应细胞中激活这些离子通量。了解重力如何导致负责这些通量的离子转运蛋白的激活,应有助于深入了解编码根冠小柱细胞中重力信号的一些初始分子变化。将研究解决此问题的几种方法:(1)将监测完整重力刺激根盖中小柱细胞周围细胞质、细胞壁和介质中的 H+、Ca2+ 和 K+ 通量。这些离子变化将使用一系列新颖的荧光离子成像探针在活的重力响应根中进行监测。(2)信号传导或离子转运活性的细胞质调节剂的活性,例如第二信使以及肌动蛋白和微管蛋白细胞骨架,将通过对小柱细胞应用抑制剂和激活剂来改变。然后将评估这些因素对抑制或模拟 H+ 和 Ca2+ 通量的重力调节的影响。(3) 由于有大量证据表明钙调蛋白在离子转运蛋白调节以及重力响应中的作用,因此将操纵钙调蛋白活性并监测其对重力刺激离子通量的影响。此外,一种新型的基于绿色荧光蛋白的钙调蛋白活性指示剂将用于对小柱细胞胞质内潜在的重力诱导的钙调蛋白激活域进行成像。(4)为了测试重力感知的淀粉平衡石模型,将使用激光镊子置换非重力刺激的根中的小柱细胞中的淀粉体。然后将评估 H+ 和 Ca2+ 通量调节的类重力效应。通过淀粉质体置换诱导小柱细胞离子运输的类重力激活将有力地支持拟南芥根冠重力感知的淀粉平衡石模型。这项研究的结果将扩展对植物使用的重力感应机制的理解。特别是,这些研究将有助于确定植物根部重力感应系统初始元素的候选分子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Gilroy其他文献

Root Hair Development
  • DOI:
    10.1007/s00344-003-0007-x
  • 发表时间:
    2003-04-28
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Tatiana Bibikova;Simon Gilroy
  • 通讯作者:
    Simon Gilroy
A Comparison between Quin-2 and Aequorin as Indicators of Cytoplasmic Calcium Levels in Higher Plant Cell Protoplasts.
Quin-2 和水母发光蛋白作为高等植物细胞原生质体细胞质钙水平指标的比较。
  • DOI:
    10.1104/pp.90.2.482
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Simon Gilroy;W. A. Hughes;Anthony Trewavas
  • 通讯作者:
    Anthony Trewavas
A touchy subject: Casup2+/sup signaling during leaf movements in Mimosa
一个敏感的话题:含羞草叶片运动过程中的 Casup2+/sup 信号传导
  • DOI:
    10.1016/j.ceca.2023.102695
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Arkadipta Bakshi;Sarah J. Swanson;Simon Gilroy
  • 通讯作者:
    Simon Gilroy
Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent.
大麦糊粉原生质体中的信号转导是钙依赖性和独立性的。
  • DOI:
    10.1105/tpc.8.12.2193
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Gilroy
  • 通讯作者:
    Simon Gilroy
Signal processing and transduction in plant cells: the end of the beginning?
植物细胞中的信号处理与转导:开端的终结?

Simon Gilroy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Gilroy', 18)}}的其他基金

Collaborative Research: Systemic Signailng Networks in Arabidopsis
合作研究:拟南芥系统信号网络
  • 批准号:
    2016177
  • 财政年份:
    2020
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Mechanotransduction Networks in Arabidopsis
拟南芥中的力转导网络
  • 批准号:
    1557899
  • 财政年份:
    2016
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Ca2+ Waves in Systemic Signaling Networks in Plants
植物系统信号网络中的 Ca2 波
  • 批准号:
    1329723
  • 财政年份:
    2013
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Integration of Hypoxic Signaling Networks
缺氧信号网络的整合
  • 批准号:
    1121380
  • 财政年份:
    2011
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Continuing Grant
Cellular Mechanisms of Mechanotransduction in Arabidopsis
拟南芥机械力转导的细胞机制
  • 批准号:
    0641288
  • 财政年份:
    2007
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular, Biochemical and Signal Transduction Analysis of a Phytotoxic Root-Root Communication Process Mediated by (-)-Catechin in the Rhizosphere
合作研究:根际 (-)-儿茶素介导的植物毒性根-根通讯过程的分子、生化和信号转导分析
  • 批准号:
    0750968
  • 财政年份:
    2007
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular, Biochemical and Signal Transduction Analysis of a Phytotoxic Root-Root Communication Process Mediated by (-)-Catechin in the Rhizosphere
合作研究:根际 (-)-儿茶素介导的植物毒性根-根通讯过程的分子、生化和信号转导分析
  • 批准号:
    0336738
  • 财政年份:
    2004
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Multiphoton Confocal Microscope for Plant Cell Biology
用于植物细胞生物学的多光子共焦显微镜
  • 批准号:
    0301460
  • 财政年份:
    2003
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Signal Transduction in Root Gravitropism
根向地性中的信号转导
  • 批准号:
    0212099
  • 财政年份:
    2002
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Signal Transduction in Arabidopsis Root Gravitropism
拟南芥根向地性中的信号转导
  • 批准号:
    9513991
  • 财政年份:
    1996
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Dissecting bacterial signal transduction
剖析细菌信号转导
  • 批准号:
    DP240102465
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Discovery Projects
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Development of tendon/ligament repair modulater using a chemically modified Tetra-PEG gel with signal transduction capability
使用具有信号转导能力的化学改性 Tetra-PEG 凝胶开发肌腱/韧带修复调节剂
  • 批准号:
    23K18325
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
TLR Transduction of Dysbiotic Pelvic Pain
生态失调性盆腔疼痛的 TLR 转导
  • 批准号:
    10737191
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
Conference: 2023 Sensory Transduction in Microorganisms GRC/GRS: Microbial Signaling: From Molecular Mechanisms to Key Roles in Complex Environments
会议:2023 微生物感觉转导 GRC/GRS:微生物信号传导:从分子机制到复杂环境中的关键作用
  • 批准号:
    2400749
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
RII Track-4:NSF:Chloroplast retrograde signaling during plant immunity: integrating signal transduction and cellular dynamics
RII Track-4:NSF:植物免疫过程中叶绿体逆行信号传导:整合信号转导和细胞动力学
  • 批准号:
    2329266
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Standard Grant
Understanding the role of hair cell mechanoelectrical transduction in age-related and noise-induced hearing loss
了解毛细胞机电转导在年龄相关性和噪声性听力损失中的作用
  • 批准号:
    BB/X000567/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.57万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了