Local Search Strategies Using Generalized Hill Climbing Algorithms

使用广义爬山算法的本地搜索策略

基本信息

项目摘要

This grant provides funding to study local search strategies for discrete optimization problems, using the generalized hill climbing algorithm framework. Generalized hill climbing algorithms provide a well-defined structure for classifying and studying a large body of local search algorithms typically used to address a wide variety of (real-world) manufacturing and service industry problems that canbe modeled as discrete optimization problems. This project presents and classifies local search algorithms(including simulated annealing, threshold accepting, and tabu search, among others) using the generalized hill climbing algorithm framework, identifies and develops convergence results and new finite-time performance measures for such algorithms (that more closely match how practitioners would apply them), studies the implications of these convergence results and finite-time performance measures on particular algorithm formulations, and evaluates the application of such algorithms to manufacturing and service industry discrete optimization problems. The results of this research will provide a well-defined structure for comparing and evaluating different types of local search algorithms using a common set of performance measures. This, in turn, will provide a practical vehicle by which new local search algorithms can be systematically developed, hence provide the potential to efficiently address larger and more challenging manufacturing and service industry problems. Moreover, an industrial partner has committed to implementing several such generalized hill climbing algorithms into a discrete manufacturing process design optimization computer software tool that they are developing and commercializing through a Phase II Small Business Innovation Research (SBIR) contract. This tool will also include a visualization capability of the generalized hill climbing algorithm performance measures developed in this project.
这笔赠款提供资金,用于研究离散优化问题的局部搜索策略,使用通用爬山算法框架。广义爬山算法提供了一种定义良好的结构,用于分类和研究大量的局部搜索算法,这些局部搜索算法通常用于解决可建模为离散优化问题的各种(真实世界)制造业和服务业问题。本项目使用广义爬山算法框架提出并分类局部搜索算法(包括模拟退火法、阈值接受和禁忌搜索等),识别和开发这些算法的收敛结果和新的有限时间性能指标(更接近实践者应用它们的方式),研究这些收敛结果和有限时间性能指标对特定算法公式的影响,并评估这些算法在制造业和服务业离散优化问题中的应用。这项研究的结果将提供一个明确的结构,用于使用一组共同的性能衡量标准来比较和评估不同类型的本地搜索算法。这反过来将提供一个实用的工具,通过它可以系统地开发新的本地搜索算法,从而提供有效地解决更大和更具挑战性的制造业和服务业问题的潜力。此外,一家工业合作伙伴已承诺将几种这样的通用爬山算法实施到离散制造过程设计优化计算机软件工具中,他们正在开发该工具,并通过第二阶段小型企业创新研究(SBIR)合同进行商业化。该工具还将包括在该项目中开发的通用爬山算法性能测量的可视化能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheldon Jacobson其他文献

Comparison of the performance of serum and urine hCG immunoassays in the evaluation of gynecologic patients
  • DOI:
    10.1016/s0196-0644(85)80924-0
  • 发表时间:
    1985-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sonya Naryshkin;Tar C Aw;Marc Filstein;Jane G Murphy;Jerome F Strauss;Fritz L Kiechle;Sheldon Jacobson
  • 通讯作者:
    Sheldon Jacobson
Approach to generalized weakness and peripheral neuromuscular disease.
全身无力和周围神经肌肉疾病的治疗方法。
Assessing the quality of emergency care: The medical record versus patient outcome
  • DOI:
    10.1016/s0196-0644(84)80605-8
  • 发表时间:
    1984-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jane G Murphy;Sheldon Jacobson
  • 通讯作者:
    Sheldon Jacobson
Satisfaction with practices: Emergency physicians versus internists
  • DOI:
    10.1016/s0196-0644(87)80172-5
  • 发表时间:
    1987-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jane G Murphy;Sheldon Jacobson
  • 通讯作者:
    Sheldon Jacobson
Self-administered nitrous oxide: An adjunct analgesic
  • DOI:
    10.1016/s0361-1124(79)80149-5
  • 发表时间:
    1979-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Neal Flomenbaum;E. John Gallagher;Kathleen Eagen;Sheldon Jacobson
  • 通讯作者:
    Sheldon Jacobson

Sheldon Jacobson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheldon Jacobson', 18)}}的其他基金

Workshop: Setting a Broader Impact Innovation Roadmap; Arlington, Virginia; May 2016
研讨会:制定更广泛影响的创新路线图;
  • 批准号:
    1629955
  • 财政年份:
    2016
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
A Game Theoretic Approach to Pediatric Vaccine Pricing
儿科疫苗定价的博弈论方法
  • 批准号:
    1161458
  • 财政年份:
    2012
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Pediatric Vaccine Formulary Optimization and Analysis
合作研究:儿科疫苗配方优化与分析
  • 批准号:
    0457176
  • 财政年份:
    2005
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Continuing Grant
Exploratory Research On Engineering The Service Sector: Collaborative Research: Research on Designing Vaccine Formularies for Childhood Immunization
工程探索性研究 服务部门:合作研究:儿童免疫疫苗配方设计研究
  • 批准号:
    0222597
  • 财政年份:
    2003
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Aviation Access Control Security Systems
合作研究:航空访问控制安全系统
  • 批准号:
    0114499
  • 财政年份:
    2001
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
Engineering Research Equipment: Workstations for Computational Studies in Large-Scale Simulation and Mathematical Programming Research
工程研究设备:大规模仿真和数学规划研究中的计算研究工作站
  • 批准号:
    9423929
  • 财政年份:
    1995
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
Research Initiation: Building and Analyzing Discrete Event Simulation Models of Complex Systems -- A Computational Complexity Approach
研究启动:复杂系统离散事件仿真模型的构建和分析——计算复杂性方法
  • 批准号:
    9409266
  • 财政年份:
    1994
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant

相似海外基金

Comprehensive search for host factors related to liver fibrosis mechanisms and development of novel therapeutic strategies
全面寻找肝纤维化机制相关宿主因素并开发新的治疗策略
  • 批准号:
    22H03050
  • 财政年份:
    2022
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effective observational analysis to learners' behavior by visual search strategies
通过视觉搜索策略对学习者行为进行有效的观察分析
  • 批准号:
    21H00887
  • 财政年份:
    2021
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Social Learning, Consumer Search and Firms' Dynamic Strategies: A Theoretical Approach
社会学习、消费者搜索和企业动态策略:理论方法
  • 批准号:
    21K13300
  • 财政年份:
    2021
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RI: Small: Collaborative Research: Minimum-Cost Strategies for Sequential Search and Evaluation
RI:小型:协作研究:顺序搜索和评估的最低成本策略
  • 批准号:
    1909446
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
The role of familiarity and experience in the implementation of efficient visual search strategies
熟悉度和经验在实施高效视觉搜索策略中的作用
  • 批准号:
    ES/S016120/1
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Research Grant
How Confidence Influences Information Search Strategies
信心如何影响信息搜索策略
  • 批准号:
    2261863
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Studentship
RI: Small: Collaborative Research: Minimum-Cost Strategies for Sequential Search and Evaluation
RI:小型:协作研究:顺序搜索和评估的最低成本策略
  • 批准号:
    1909335
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Standard Grant
Migration networks and risk diversification: How shocks in the US affect job search strategies in Mexico
移民网络和风险多元化:美国的冲击如何影响墨西哥的求职策略
  • 批准号:
    408081103
  • 财政年份:
    2018
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Research Fellowships
Large-scale distributed Monte-Carlo game-tree search algorithm that can employ different evaluation strategies
可以采用不同评估策略的大规模分布式蒙特卡洛博弈树搜索算法
  • 批准号:
    17H01846
  • 财政年份:
    2017
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Search for new therapeutic strategies targeting regulatory T cells for lung cancer with pulmonary fibrosis
寻找针对肺癌伴肺纤维化的调节性T细胞的新治疗策略
  • 批准号:
    17K09663
  • 财政年份:
    2017
  • 资助金额:
    $ 18.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了