Exact and Asymptotic Solutions to Applied Stochastic Models Arising in Queueing Theory and Other Areas
排队论和其他领域中出现的应用随机模型的精确和渐近解
基本信息
- 批准号:9971656
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of our research is to develop and apply new mathematicalmethods for constructing solutions to difference, differential-difference,integral, and integro- differential equations. These asymptotic andsingular perturbation techniques are based on the WKB method, boundarylayer analysis and matched asymptotic expansions. New nontrivialextensions of these methods have previously been developed to solveproblems in a wide variety of applications, which led to remarkablyaccurate results. We plan to continue the development of these methods,and to apply them in particular to models arising in the performanceevaluation of queueing systems. Several aspects of the project aredirectly related to problems arising in the analysis of high-speedcommunication systems. We also propose to study problems in mathematicalphysics, related to diffusion-convection, bifurcation, and tunnelingthrough potential barriers.An important aspect of our research program is the study of queues orlines. In its simplest form, a queueing system consists of a server and aqueue or waiting room. Customers arrive, possibly at random times, andrequest service of random length from the server. If the system is empty,an arriving customer is sent directly to the server. Otherwise, thecustomer is relegated to wait in the queue. One is interested indeveloping mathematical models of the queueing system and computingperformance measures, such as the average number of customers waiting, theaverage waiting time, the utilization, etc., to help understand thebehavior of the system. For complicated queueing systems, the performancemeasures are difficult to compute and a major goal of our research is toconstruct useful approximations to them. The main application of our workin queueing is to high-speed communication networks such as the Internet. Here the customers are packets of information (bits), such as data files,voice messages, or video. The server is hardware such as a router orswitch, which transmits the packets along the Internet. At each switch,the packets are stored in a queue, if needed, before transmission. Thesebuffers can only a fixed number of packets. Arrivals finding a fullbuffer are lost and hence the system performance is degraded. Theperformance measures, average buffer size, average packet delays, and theprobability of losing information, is important in the design and tuningof high-speed communication networks. Our research provides networkdesigners with mathematical tools for approximating these performancemeasures.
我们的研究目的是发展和应用新的数学方法来构造差分、微分-差分、积分和积分-微分方程的解。这些渐近和奇异摄动技术是基于WKB方法、边界层分析和匹配渐近展开。这些方法的新的非平凡扩展已经被开发出来,以解决各种各样的应用中的问题,这导致了非常准确的结果。我们计划继续开发这些方法,并将它们特别应用于排队系统性能评估中产生的模型。该项目的几个方面与高速通信系统分析中出现的问题直接相关。我们还建议研究数学物理中与扩散对流、分岔和穿越势垒隧道有关的问题。我们研究项目的一个重要方面是对在线排队的研究。在最简单的形式中,排队系统由服务器和队列或等候室组成。客户可能在随机时间到达,并从服务器请求随机长度的服务。如果系统为空,则直接将到达的客户发送到服务器。否则,客户将被降级到队列中等待。一个是对开发排队系统的数学模型和计算性能度量感兴趣,例如平均等待的客户数量、平均等待时间、利用率等,以帮助理解系统的行为。对于复杂的排队系统,性能度量很难计算,我们研究的一个主要目标是构建有用的近似值。我们的工作队列的主要应用是高速通信网络,如Internet。这里的客户是信息包(比特),如数据文件、语音信息或视频。服务器是硬件,如路由器或交换机,它在互联网上传输数据包。在每个交换机上,如果需要,在传输之前,数据包被存储在队列中。这些缓冲区只能容纳固定数量的数据包。到达发现一个满缓冲区丢失,因此系统性能下降。性能指标,平均缓冲区大小,平均数据包延迟和丢失信息的概率,在高速通信网络的设计和调优中是重要的。我们的研究为网络设计者提供了近似这些性能度量的数学工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Tier其他文献
An analysis of neutral-alleles and variable-environment diffusion models
- DOI:
10.1007/bf00275203 - 发表时间:
1982-05-01 - 期刊:
- 影响因子:2.300
- 作者:
Charles Tier - 通讯作者:
Charles Tier
An analysis of a dendritic neuron model with an active membrane site
- DOI:
10.1007/bf00276954 - 发表时间:
1986-02-01 - 期刊:
- 影响因子:2.300
- 作者:
Steven M. Baer;Charles Tier - 通讯作者:
Charles Tier
Charles Tier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Tier', 18)}}的其他基金
Mathematical Sciences: Singular Perturbation Techniques in Queueing Theory
数学科学:排队论中的奇异扰动技术
- 批准号:
9300136 - 财政年份:1993
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Asymptotic and Singular Pertubation Techniques with Applications
数学科学:渐近和奇异微扰技术及其应用
- 批准号:
8922988 - 财政年份:1990
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Asymptotic and Singular Perturbation Techniques with Applications
数学科学:渐近和奇异摄动技术及其应用
- 批准号:
8620267 - 财政年份:1987
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Asymptotic and Singular Perturbation Techniques with Applications
数学科学:渐近和奇异摄动技术及其应用
- 批准号:
8501535 - 财政年份:1985
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
The Asymptotic Solutions of Dispersive and Hyperbolic Equations
色散方程和双曲方程的渐近解
- 批准号:
2205931 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic expansions of ODE type solutions and their related inverse problems
ODE型解的渐近展开及其相关反问题
- 批准号:
20F20327 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The effect of delay on the asymptotic properties of solutions of difference equations
时滞对差分方程解渐近性质的影响
- 批准号:
19K03524 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the asymptotic problem appearing in dynamical systems and surface evolution equations by the method of viscosity solutions
粘性解法研究动力系统和表面演化方程的渐近问题
- 批准号:
19K03580 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions to hyperbolic and dispersive equations with damping terms
具有阻尼项的双曲和色散方程解的渐近行为
- 批准号:
19K03596 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic solutions of the plasmonic eigenvalue problem and applications
等离子体特征值问题的渐近解及其应用
- 批准号:
EP/R041458/1 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
- 批准号:
18H01128 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic behavior of solutions of dissipative hyperbolic equations
耗散双曲方程解的渐近行为
- 批准号:
17K05338 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions for differential equations with phi-Laplacian
具有 phi-拉普拉斯算子的微分方程解的渐近行为
- 批准号:
17J00259 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




