Operator Algebras and Wavelet Theory

算子代数和小波理论

基本信息

  • 批准号:
    0070796
  • 负责人:
  • 金额:
    $ 14.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT:The plan of this proposal is to utilize operator-algebraic methods to solve several problems in the mathematical theory of wavelets, and in the related area of frame theory, including Weyl-Heisenberg and Gabor theory. We have a new lead on the well-known wavelet connectivity problem, which we perceive to be a basic issue in the subject. Another wavelet problem of a basic issue nature concerns the question of when a Riesz wavelet which is known to be a linear combination of MRA wavelets is itself an MRA wavelet. Others problems we propose to work on concern norm-density of the wavelet frames, operator-theoretic interpolation of wavelets, superframes and superwavelets, and Weyl-Heisenberg frames. We will also work on two projects in a different direction concerning operator spaces, reflexivity and optimization. The first concerns an axiomatic description of a ranking-function for an abstract operator space. There is a natural definition of a concrete ranking-function for a concretely given operator space, but an abstract description of this is elusive and seems to be a basic issue. The second concerns the question of which matrix completion problems are well-posed in the sense of optimization theory. This proposal represents work of an interdisciplinary nature on the mathematics of wavelet and frame theory. Work in this direction that was previously supported by NSF has settled some open questions and has impacted the work of others in harmonic analysis and applications-oriented wavelet theory. Continuing in this direction is the main thrust of the present proposal. Numerous papers have been written in the past dozen years dealing with applications of wavelets to signal and image processing. So far, most of the published work has dealt directly with applications, and relatively little has been accomplished concerning the basic mathematical underpinnings of the subject. This proposal is concerned with this mathematics. There have been some surprises that have come up in our work in the past two years, and these discoveries have led to some potential areas of applications of a previously unsuspected nature. There are several outstanding problems we emphasize in this proposal and plan to work on. Under prior NSF support we also accomplished research with several co-authors on some basic problems in operator theory, operator spaces, operator algebras and matrix optimization, and this leads to some further open problems and directions we plan to pursue. Several graduate and undergraduate students arinvolved in this project. This grant also contains the NSF partial support of the annual Great Plains Operator Theory Symposium, a major mathematics research conference which rotates among a number of universities in the USA.
摘要:该计划的计划是利用算子代数方法来解决小波数学理论中的几个问题,以及框架理论的相关领域,包括Weyl-Heisenberg和Gabor理论。我们有一个新的领导著名的小波连通性问题,我们认为这是一个基本问题的主题。 另一个基本问题性质的小波问题涉及的问题时,Riesz小波,这是已知的MRA小波的线性组合本身是一个MRA小波。 其他问题,我们建议工作的关注范数密度的小波框架,小波,超框架和超小波,和Weyl-Heisenberg框架的算子理论插值。 我们还将致力于两个项目在一个不同的方向,涉及算子空间,自反性和优化。 第一个问题涉及一个抽象算子空间的秩函数的公理化描述。 对于一个具体的算子空间,有一个具体的秩函数的自然定义,但对它的抽象描述是难以捉摸的,似乎是一个基本问题。 第二个问题是矩阵完备问题在最优化理论的意义上是适定性的。 这项建议代表了工作的一个跨学科性质的数学小波和框架理论。以前由NSF支持的这个方向的工作已经解决了一些悬而未决的问题,并影响了其他人在谐波分析和面向应用的小波理论方面的工作。继续朝这个方向努力是本建议的主要方向。 在过去的十几年中,已经有大量的论文涉及小波在信号和图像处理中的应用。到目前为止,大多数已发表的工作直接处理的应用程序,并已完成相对较少的基本数学基础的问题。 这个建议与数学有关。 在过去的两年里,我们的工作中出现了一些令人惊讶的发现,这些发现导致了一些以前未知的潜在应用领域。 有几个突出的问题,我们强调在这个建议,并计划工作on. Under以前NSF的支持下,我们还完成了研究与几个合作者在算子理论,算子空间,算子代数和矩阵优化的一些基本问题,这导致了一些进一步的开放问题和方向,我们计划追求。 几个研究生和本科生参与了这个项目.该补助金还包含NSF对年度大平原算子理论研讨会的部分支持,该研讨会是一个主要的数学研究会议,在美国的一些大学中轮流举行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Larson其他文献

An implicit particle code with <em>exact</em> energy and charge conservation for electromagnetic studies of dense plasmas
  • DOI:
    10.1016/j.jcp.2023.112383
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Justin Ray Angus;William Farmer;Alex Friedman;Debojyoti Ghosh;Dave Grote;David Larson;Anthony Link
  • 通讯作者:
    Anthony Link
b Requires TGF-Independent of a Type 2 Immune Shift and Diabetes in Nonobese Diabetic Mice Is Helminth Protection against Autoimmune
b 需要 TGF 独立于非肥胖糖尿病小鼠的 2 型免疫转变和糖尿病,是针对自身免疫的蠕虫保护
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitre;Stocker;S. Davies;K. Tarbell;Edward;Gondorf;A. Hoerauf;K. Killoran;J. Thomas;Mueller;David Larson;Kateryna Soloviova;Fabian;M. Hübner;Yinghui Shi;M. Torrero
  • 通讯作者:
    M. Torrero
Improvement in Context: Exploring Aims, Improvement Priorities, and Environmental Considerations in a National Sample of Programs Using "Small Data".
背景下的改进:使用“小数据”探索国家计划样本中的目标、改进优先事项和环境考虑因素。
  • DOI:
    10.4300/jgme-d-17-00952.1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Philibert;J. Beernink;Barbara H Bush;D. Caniano;Andrea J Chow;J. Coyle;J. Gilhooly;D. E. Kraybill;David Larson;S. Moran;M. C. Nace;W. Robertson;Judith D. Rubin;Theodore Sanford
  • 通讯作者:
    Theodore Sanford
OUTCOME AND CHARACTERISTICS OF SHOCKABLE VERSUS NON-SHOCKABLE CARDIAC ARREST IN ST ELEVATION MYOCARDIAL INFARCTION AT A REGIONAL TRANSFER CENTER
  • DOI:
    10.1016/s0735-1097(17)34657-0
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Johnson;Claire Donovan;Ross Garberich;John Hibbs;David Larson;Timothy Henry;Scott Sharkey
  • 通讯作者:
    Scott Sharkey
An implicit particle code with emexact/em energy and charge conservation for electromagnetic studies of dense plasmas
用于稠密等离子体电磁研究的具有精确/精确能量和电荷守恒的隐式粒子代码
  • DOI:
    10.1016/j.jcp.2023.112383
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Justin Ray Angus;William Farmer;Alex Friedman;Debojyoti Ghosh;Dave Grote;David Larson;Anthony Link
  • 通讯作者:
    Anthony Link

David Larson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Larson', 18)}}的其他基金

SBIR Phase II: Innovative Recycled Microballoon Thermoplastic Sandwich Composites
SBIR 第二阶段:创新的再生微球热塑性夹心复合材料
  • 批准号:
    1058155
  • 财政年份:
    2011
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Great Plains Operator Theory Symposium (GPOTS - 2004); May 26-30, 2004; College Station, TX
大平原算子理论研讨会(GPOTS - 2004);
  • 批准号:
    0411526
  • 财政年份:
    2004
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
  • 批准号:
    0139386
  • 财政年份:
    2002
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
MRI: Integrated Crystal Growth and Wafer Manufacture Facility
MRI:集成晶体生长和晶圆制造设施
  • 批准号:
    9871152
  • 财政年份:
    1998
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Operator Algebras, Operator Theory and Applications
算子代数、算子理论与应用
  • 批准号:
    9706810
  • 财政年份:
    1997
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
International Research Fellow Awards Program: Specimen Fabrication and Atom Probe Analysis of Metallic Multi-Layer Thin Film Structures
国际研究员奖励计划:金属多层薄膜结构的样品制作和原子探针分析
  • 批准号:
    9600327
  • 财政年份:
    1996
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Operator Algebras and Operator Theory
数学科学:算子代数和算子理论
  • 批准号:
    9401544
  • 财政年份:
    1994
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Algebras and Operator Theory
数学科学:算子代数和算子理论
  • 批准号:
    9107137
  • 财政年份:
    1991
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Algebras and Operator Theory
数学科学:算子代数和算子理论
  • 批准号:
    8903317
  • 财政年份:
    1989
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Algebras and Operator Theory
数学科学:算子代数和算子理论
  • 批准号:
    8744359
  • 财政年份:
    1987
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Categorification and KLR algebras
分类和 KLR 代数
  • 批准号:
    DP240101809
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Discovery Projects
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Quantum algebras with supersymmetries
具有超对称性的量子代数
  • 批准号:
    DP240101572
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Discovery Projects
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
  • 批准号:
    2404675
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Shuffle algebras and vertex models
洗牌代数和顶点模型
  • 批准号:
    DP240101787
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Discovery Projects
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了