Taylor Expansion Diagrams: A Compact Canonical Representation for RTL Verification

泰勒展开图:RTL 验证的紧凑规范表示

基本信息

  • 批准号:
    0204146
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this work is to develop a new canonical representation and an efficient verification infrastructure to support the RTL verification of large designs. The proposed graph-based representation, called Taylor Expansion Diagram, is based on a different decomposition principle than used by decisiondiagrams such as BDDs and BMDs. It is obtained by treating the symbolic expression of the design as a continuous, differentiable function and applying Taylor series expansion with respect to its word-level variables. The resulting Taylor Expansion Diagram (TED) is canonical for a fixed ordering of variables. TEDs can be used to represent functions containing both algebraic and Boolean expressions, facilitating the representation of complex designs with arithmetic operators and Boolean logic, typically encountered in RTL specifications. We are building an RTL verification infrastructure centered around TED that can be used to verify functional equivalence of RTL designs. We are developing systematic, algorithmic techniques for constructing and manipulating TED representations of HDL designs, based on the new theory.We are also investigating how to exploit TEDs for implementation verification, that is checking functional equivalence between an RTL specification and its logic, gate-level implementation. By carrying out extensive experiments, the applicability of TEDs to realistic designs with arithmetic circuits and Boolean logic must be evaluated, and the performance of TEDs compared against that of BDDs and *BMDs.This project has also an important educational role of teaching students about modern design representations from decision diagrams to more abstract, word-level data structures in the context of design synthesis and verification.
这项工作的目标是开发一种新的规范化表示和有效的验证基础设施,以支持大型设计的RTL验证。提出的基于图的表示称为Taylor展开图,它基于与决策图(如bdd和bmd)不同的分解原则。将设计的符号表达式视为一个连续的、可微的函数,并对其字级变量应用泰勒级数展开,得到了它。得到的泰勒展开图(TED)对于变量的固定顺序是规范的。ted可以用来表示包含代数表达式和布尔表达式的函数,方便使用算术运算符和布尔逻辑表示复杂的设计,这通常在RTL规范中遇到。我们正在构建一个以TED为中心的RTL验证基础设施,可以用来验证RTL设计的功能等价性。基于新的理论,我们正在开发系统化的算法技术,用于构造和操纵HDL设计的TED表示。我们还在研究如何利用ted进行实现验证,即检查RTL规范与其逻辑、门级实现之间的功能等效性。通过大量的实验,必须评估TEDs在具有算术电路和布尔逻辑的实际设计中的适用性,并将TEDs与bdd和* bmd的性能进行比较。这个项目也有一个重要的教育作用,在设计综合和验证的背景下,教学生从决策图到更抽象的、词级数据结构的现代设计表示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maciej Ciesielski其他文献

Strict K-monotonicity and K-order continuity in symmetric spaces
  • DOI:
    10.1007/s11117-017-0540-7
  • 发表时间:
    2017-10-28
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Maciej Ciesielski
  • 通讯作者:
    Maciej Ciesielski
Bioelectrical Impedance Analysis to Increase the Sensitivity of Screening Methods for Diagnosing Cancer Cachexia in Patients with Colorectal Cancer
生物电阻抗分析可提高诊断结直肠癌患者癌症恶病质的筛查方法的敏感性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    J. Szefel;W. Kruszewski;M. Szajewski;Maciej Ciesielski;A. Danielak
  • 通讯作者:
    A. Danielak
On some modifications of n-th von Neumann–Jordan constant for Banach spaces
关于 Banach 空间的第 n 个冯·诺依曼-乔丹常数的一些修改
Immunonutrition in oncology
肿瘤学中的免疫营养
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Szefel;W. Kruszewski;Maciej Ciesielski
  • 通讯作者:
    Maciej Ciesielski
Enantioselective Catalytic Sulfenofunctionalization of Nonactivated Cyclic and (Z)-Alkenes
非活化环状烯烃和 (Z)-烯烃的对映选择性催化亚磺基官能化
  • DOI:
    10.1055/s-0041-1738547
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Szefel;W. Kruszewski;Maciej Ciesielski;M. Szajewski;K. Kawecki;E. Aleksandrowicz‐Wrona;J. Jankun;W. Lysiak
  • 通讯作者:
    W. Lysiak

Maciej Ciesielski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maciej Ciesielski', 18)}}的其他基金

SHF: Small: Formal Verification of SQRT and Divider Circuits
SHF:小:SQRT 和分压器电路的形式验证
  • 批准号:
    2006465
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Small: Word-level Abstraction of Arithmetic Gate-level Circuits
SHF:小:算术门级电路的字级抽象
  • 批准号:
    1617708
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Small: Network Flow Approach to Functional Verification of Arithmetic Circuits
SHF:小型:算术电路功能验证的网络流方法
  • 批准号:
    1319496
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Small: Advances in Distributed Spatial-Parallel Event-Driven HDL Simulation
SHF:小型:分布式空间并行事件驱动 HDL 仿真的进展
  • 批准号:
    1017530
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Verification-Aware Algorithmic Synthesis based on Canonical Data Flow Representation
基于规范数据流表示的验证感知算法综合
  • 批准号:
    0702506
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
SBIR Phase I: HW-Accelerated Verification with TestBench Caching and Reduced Design Compilation
SBIR 第一阶段:使用 TestBench 缓存和减少设计编译的硬件加速验证
  • 批准号:
    0339399
  • 财政年份:
    2004
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
US-France/Germany Cooperative Research: Circuit and System Verification using Word-Level Information
美法/德国合作研究:使用字级信息进行电路和系统验证
  • 批准号:
    0233206
  • 财政年份:
    2003
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Logic-Layout Co-Synthesis for PTL/CMOS Logic
PTL/CMOS 逻辑的逻辑布局协同综合
  • 批准号:
    9901254
  • 财政年份:
    1999
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
New Directions in Sequential Synthesis and Optimization
顺序综合和优化的新方向
  • 批准号:
    9613864
  • 财政年份:
    1997
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
U.S.-Korea Cooperative Research: High Performance Synthesis with Wave Pipelining
美韩合作研究:波浪流水线的高性能合成
  • 批准号:
    9311863
  • 财政年份:
    1994
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Establishing a novel culture system for lymphoid-biased HSC expansion
建立用于淋巴偏向 HSC 扩增的新型培养系统
  • 批准号:
    24K19206
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tri-State Expansion, Curriculum Evolution, and Equity during BioTechnician Training (Tri ExCEEd BTT)
生物技术人员培训期间的三州扩展、课程演变和公平 (Tri ExCEEd BTT)
  • 批准号:
    2400830
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
FDSS Track 1: Expansion and Integration of Space Physics at the University of Delaware
FDSS Track 1:特拉华大学空间物理学的扩展和整合
  • 批准号:
    2347952
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
機能的な膵β細胞量を増加させる「膵β細胞のhealthy expansion」の分子機構の解明
阐明增加功能性胰腺β细胞数量的“胰腺β细胞健康扩张”的分子机制
  • 批准号:
    23K27652
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
  • 批准号:
    24K07062
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004864/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2411677
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X00418X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了