Verification-Aware Algorithmic Synthesis based on Canonical Data Flow Representation
基于规范数据流表示的验证感知算法综合
基本信息
- 批准号:0702506
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTNSF Proposal 0702506PI: Maciej CiesielskiInst: U of Massachusetts, AmherstVerification-Aware Algorithmic Synthesis based on Canonical Data Flow RepresentationThis work proposes a new methodology in algorithmic synthesis and verification for data intensive applications. The proposed work offers a systematic method to perform behavioral transformation of the initial description of designs specified at the algorithmic level using standard programming languages, such as C or C++. Optimization of design specification at the functional or behavioral level, rather than on the register-transfer or gate level, has been shown to have the greatest impact on the quality of synthesized hardware.The proposed method is based on a novel canonical representation of the computation, called Taylor Expansion Diagram (TED). As a canonical functional representation, TED represents a class of structural representations, from which one optimized for a particular design objective can be selected. TED will serve as a vehicle to transform initial, "un-timed" algorithmic design specification into a data flow description that will produce architecture optimized for a particular design cost, such as area, latency, power, or performance. The modified data flow graph can be synthesized by a standard high-level synthesis tool to produce an RTL net-list. An important aspect of this work is that it performs synthesis in a verification-aware fashion. This is accomplished by favoring those behavioral transformations that are ``verification-friendly'' and by maintaining a record of behavioral transformation history to be used by a formal verification engine. The proposed work will culminate in the development of a CAD system for fast architectural exploration for signal processing and algorithm-oriented designs. The prototype system will be distributed on the world-wide web.
摘要/ abstract摘要:nsf提案0702506PI: Maciej ciesielski institute: U of Massachusetts, amherst基于规范数据流表示的验证感知算法合成这项工作为数据密集型应用的算法合成和验证提出了一种新的方法。建议的工作提供了一种系统的方法来执行在算法级别使用标准编程语言(如C或c++)指定的设计的初始描述的行为转换。在功能或行为层面优化设计规范,而不是在寄存器-传输或门级,已被证明对合成硬件的质量有最大的影响。所提出的方法是基于计算的一种新的规范表示,称为泰勒展开图(TED)。作为规范的功能表示,TED表示了一类结构表示,可以从中选择针对特定设计目标进行优化的结构表示。TED将作为一种工具,将初始的“非定时”算法设计规范转化为数据流描述,从而产生针对特定设计成本(如面积、延迟、功耗或性能)进行优化的架构。修改后的数据流图可以通过标准的高级合成工具进行合成,以生成RTL网络列表。这项工作的一个重要方面是,它以验证感知的方式执行合成。这是通过支持那些“验证友好”的行为转换,并通过维护行为转换历史记录以供正式的验证引擎使用来实现的。建议的工作将最终发展一个CAD系统,用于信号处理和面向算法的设计的快速建筑探索。原型系统将在全球网络上发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maciej Ciesielski其他文献
Strict K-monotonicity and K-order continuity in symmetric spaces
- DOI:
10.1007/s11117-017-0540-7 - 发表时间:
2017-10-28 - 期刊:
- 影响因子:0.900
- 作者:
Maciej Ciesielski - 通讯作者:
Maciej Ciesielski
Bioelectrical Impedance Analysis to Increase the Sensitivity of Screening Methods for Diagnosing Cancer Cachexia in Patients with Colorectal Cancer
生物电阻抗分析可提高诊断结直肠癌患者癌症恶病质的筛查方法的敏感性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
J. Szefel;W. Kruszewski;M. Szajewski;Maciej Ciesielski;A. Danielak - 通讯作者:
A. Danielak
On some modifications of n-th von Neumann–Jordan constant for Banach spaces
关于 Banach 空间的第 n 个冯·诺依曼-乔丹常数的一些修改
- DOI:
10.1007/s43037-019-00033-1 - 发表时间:
2018 - 期刊:
- 影响因子:1.2
- 作者:
Maciej Ciesielski;R. Płuciennik - 通讯作者:
R. Płuciennik
Immunonutrition in oncology
肿瘤学中的免疫营养
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
J. Szefel;W. Kruszewski;Maciej Ciesielski - 通讯作者:
Maciej Ciesielski
Enantioselective Catalytic Sulfenofunctionalization of Nonactivated Cyclic and (Z)-Alkenes
非活化环状烯烃和 (Z)-烯烃的对映选择性催化亚磺基官能化
- DOI:
10.1055/s-0041-1738547 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Szefel;W. Kruszewski;Maciej Ciesielski;M. Szajewski;K. Kawecki;E. Aleksandrowicz‐Wrona;J. Jankun;W. Lysiak - 通讯作者:
W. Lysiak
Maciej Ciesielski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maciej Ciesielski', 18)}}的其他基金
SHF: Small: Formal Verification of SQRT and Divider Circuits
SHF:小:SQRT 和分压器电路的形式验证
- 批准号:
2006465 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Word-level Abstraction of Arithmetic Gate-level Circuits
SHF:小:算术门级电路的字级抽象
- 批准号:
1617708 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Network Flow Approach to Functional Verification of Arithmetic Circuits
SHF:小型:算术电路功能验证的网络流方法
- 批准号:
1319496 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Advances in Distributed Spatial-Parallel Event-Driven HDL Simulation
SHF:小型:分布式空间并行事件驱动 HDL 仿真的进展
- 批准号:
1017530 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: HW-Accelerated Verification with TestBench Caching and Reduced Design Compilation
SBIR 第一阶段:使用 TestBench 缓存和减少设计编译的硬件加速验证
- 批准号:
0339399 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
US-France/Germany Cooperative Research: Circuit and System Verification using Word-Level Information
美法/德国合作研究:使用字级信息进行电路和系统验证
- 批准号:
0233206 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Taylor Expansion Diagrams: A Compact Canonical Representation for RTL Verification
泰勒展开图:RTL 验证的紧凑规范表示
- 批准号:
0204146 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Logic-Layout Co-Synthesis for PTL/CMOS Logic
PTL/CMOS 逻辑的逻辑布局协同综合
- 批准号:
9901254 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
New Directions in Sequential Synthesis and Optimization
顺序综合和优化的新方向
- 批准号:
9613864 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
U.S.-Korea Cooperative Research: High Performance Synthesis with Wave Pipelining
美韩合作研究:波浪流水线的高性能合成
- 批准号:
9311863 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
A Knowledge-aware Multi-tasks-based Disease Network Construction on Biomedical Literature
基于生物医学文献的知识感知多任务疾病网络构建
- 批准号:
24K15097 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant