NER: Acoustic Radiation Pressure Driven Atomic Force Microscope for Fast Imaging and Parallel Sensing of Biological and Chemical Processes at the Nanoscale

NER:声辐射压力驱动原子力显微镜,用于纳米级生物和化学过程的快速成像和并行传感

基本信息

  • 批准号:
    0210415
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

0210415DegertekinThe capability of operating in liquid environments has been one of the key reasons for the atomic force microscope's (AFM) indisputable role in the recent advances in nanoscience and nanotechnology. This capability has not only enabled imaging biological samples and observation of biological and chemical processes at the nanoscale, but also led to the development of many microcantilever-based devices in the area of biosensing and proteomics.The liquid environment presents significant challenges to the operation of the AFM, especially in dynamic imaging modes such as tapping mode, and fast imaging applications. As compared to air, the liquids provide a more efficient coupling medium for mechanical perturbations. Hence regular piezoelectric actuation of the AFM cantilever results in spurious resonant signals due to the liquid filled cavity surrounding the sample and the actuator structure. Several novel actuators, based on magnetic, electrostatic, and thin-film piezoelectric techniques have been developed to solve this problem, but these methods severely limit the type of cantilevers and liquids that can be used for experiments. Furthermore, these methods are not suitable for actuation of individual cantilevers in an array, an important capability required for biosensing applications.This exploratory research proposal aims to remove these important obstacles in the implementation of a versatile AFM for applications in liquids using a novel microcantilever actuation technique. The technique uses the acoustic radiation force generated by collimated high frequency (100-400MHz) acoustic waves directed to the AFM cantilever to actuate the cantilever in the DC-MHz frequency range. Promising initial results using the technique have been recently obtained and presented in the proposal. Based on these results, the following objectives are proposed:-Design and microfabrication of individual and arrays of acoustic radiation pressure (ARP) actuators: The actuators will be fabricated on silicon substrates using a thin Zinc Oxide film to generate acoustic waves around 250MHz and silicon micromachining techniques will be used to fabricate acoustic Fresnel lenses to direct the acoustic beams to AFM cantilevers.-Integration of the actuator to a widely available commercial AFM system: A fluid-cell including an ARP actuator will be manufactured and used on a commercial AFM system with appropriate electronics.-Evaluation of the capabilities and limitations of the integrated actuator: The performance of the ARP actuator for fast imaging, as well as array operation will be tested and compared with conventional methods.-Study of possible adverse effects of the ARP actuator: Interaction of high frequency acoustic waves with biological processes will be explored on several important samples and the actuator design will be improved accordingly. Successful implementation of this project will impact numerous areas of nanoscience and engineering, because it will help researchers in the testing and implementation of innovative ideas and in probing a wider variety of biological and chemical processes at the nanoscale.
0210415 Degertekin在液体环境中操作的能力一直是原子力显微镜(AFM)在纳米科学和纳米技术的最新进展中无可争议的作用的关键原因之一。这种能力不仅使生物样品的成像和生物和化学过程的观察在纳米尺度上,但也导致了许多基于微电子显微镜的设备在生物传感和蛋白质组学领域的发展。液体环境提出了重大挑战的操作的AFM,特别是在动态成像模式,如轻敲模式,和快速成像应用。与空气相比,液体为机械扰动提供了更有效的耦合介质。因此,AFM悬臂的常规压电致动由于围绕样品和致动器结构的充满液体的腔而导致寄生谐振信号。已经开发了几种基于磁性、静电和薄膜压电技术的新型致动器来解决这个问题,但这些方法严重限制了可用于实验的杠杆和液体的类型。此外,这些方法是不适合在一个阵列,生物传感application.This探索性的研究建议所需的一个重要能力的驱动单个悬臂梁,旨在消除这些重要的障碍,在实施中的一个多功能的原子力显微镜在液体中的应用,使用一种新的微悬臂梁驱动技术。该技术使用由指向AFM悬臂的准直高频(100- 400 MHz)声波产生的声辐射力在DC-MHz频率范围内致动悬臂。最近已经获得了使用该技术的有希望的初步结果,并在提案中提出。基于这些结果,提出了以下目标:-单个和阵列的声辐射压力(阿普)致动器的设计和微制造:将使用薄氧化锌膜在硅衬底上制造致动器以产生约250 MHz的声波,并且将使用硅微加工技术来制造声菲涅耳透镜以将声束引导到AFM杠杆。将致动器集成到广泛使用的商业AFM系统中:将制造包括阿普致动器的流体单元,并将其用于具有适当电子器件的商业AFM系统。评估集成致动器的能力和局限性:将测试阿普致动器用于快速成像以及阵列操作的性能,并与传统方法进行比较。阿普致动器可能的不良影响研究:将在几个重要样本上探索高频声波与生物过程的相互作用,并相应改进致动器设计。 该项目的成功实施将影响纳米科学和工程的许多领域,因为它将帮助研究人员测试和实施创新想法,并在纳米尺度上探索更广泛的生物和化学过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Levent Degertekin其他文献

Controlled two-step solid-phase crystallization for high-performance polysilicon TFT's
用于高性能多晶硅 TFT 的受控两步固相结晶
  • DOI:
    10.1109/55.605445
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Vivek Subramanian;P. Dankoski;Levent Degertekin;B. Khuri;K. C. Saraswat
  • 通讯作者:
    K. C. Saraswat

Levent Degertekin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Levent Degertekin', 18)}}的其他基金

Parametric Resonance as an Electromechanical Transduction Mechanism
参数共振作为机电转换机制
  • 批准号:
    1936776
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
I-Corps: Acousto-optical RF Field Sensor for Magnetic Resonance Imaging
I-Corps:用于磁共振成像的声光射频场传感器
  • 批准号:
    1914574
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
EAGER: Acoustic Wave Driven Parametric Electrical Resonators
EAGER:声波驱动参数电谐振器
  • 批准号:
    1829821
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
I-Corps: Single Chip Intravascular and Intracardiac Ultrasound Imaging Systems
I-Corps:单芯片血管内和心内超声成像系统
  • 批准号:
    1517521
  • 财政年份:
    2015
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
NOISE-BASED HIGH RESOLUTION ULTRASOUND IMAGING USING MICROENGINEERED SURFACES AND TRANSDUCERS
使用微工程表面和换能器进行基于噪声的高分辨率超声成像
  • 批准号:
    1202118
  • 财政年份:
    2012
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Advanced atomic force microscopy using the FIRAT probe
使用 FIRAT 探针的先进原子力显微镜
  • 批准号:
    0725618
  • 财政年份:
    2007
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
CAREER: Quantitative Ultrasonic Atomic Force Microscopy of Thin Films and Subsurface Interfaces
职业:薄膜和地下界面的定量超声原子力显微镜
  • 批准号:
    0348582
  • 财政年份:
    2004
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
U.S.-Turkey Cooperative Research: Optical Metrology of MEMS
美国-土耳其合作研究:MEMS光学计量
  • 批准号:
    0423403
  • 财政年份:
    2004
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
In-Line Optical Measurement of MicroElectroMechanical Systems (MEMS) Devices During Production
生产过程中微机电系统 (MEMS) 器件的在线光学测量
  • 批准号:
    0200331
  • 财政年份:
    2002
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant

相似国自然基金

对由不同共振单元或含人工结构固体板构建的声学超表面(acoustic metasurface)的研究
  • 批准号:
    11604307
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Acoustic Cardiography在心力衰竭患者危险分层及预后评估中的应用研究
  • 批准号:
    81300244
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RAPID: Seismo-acoustic radiation from a local earthquake aftershock sequence: how, when, and why seismic waves cross the ground-atmosphere interface
RAPID:当地地震余震序列的地震声辐射:地震波如何、何时以及为何穿过地面-大气界面
  • 批准号:
    2029940
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Fablication of three-dimensional tube structure with multilayer by applying active cell control using microbubbles and acoustic radiation force
通过微泡和声辐射力的主动单元控制制造多层三维管结构
  • 批准号:
    20H04547
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Metamaterials for control of acoustic radiation forces
用于控制声辐射力的超材料
  • 批准号:
    DP200101708
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Projects
A Study on Turbulent Frictional Resistance Reduction Method by Suppressing Turbulent Fluctuation Using Acoustic Streaming Radiation
声流辐射抑制湍流脉动的湍流摩阻减阻方法研究
  • 批准号:
    20H02379
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The effect of ultrasound with acoustic radiation force impulse on lung tissue in large animals
声辐射力脉冲超声对大型动物肺组织的影响
  • 批准号:
    19K12847
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SStudy of acoustic radiation force-based actuators for optical MEMS
基于声辐射力的光学MEMS执行器的研究
  • 批准号:
    19K04505
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Near field acoustic radiation from ducts
来自管道的近场声辐射
  • 批准号:
    2284892
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Studentship
Development of ultrasonic probe evaluation system using change in liquid surface shape due to acoustic radiation pressure
开发利用声辐射压力引起的液面形状变化的超声波探头评价系统
  • 批准号:
    19K04253
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of acoustic radiation from a 1000 m/s class jet moving at a high speed in stationary ambient
研究静止环境中高速移动的 1000 m/s 级射流的声辐射
  • 批准号:
    19H02338
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantification of mechanical properties of cell adhesion using acoustic radiation pressure generated by surface acoustic waves
使用表面声波产生的声辐射压力量化细胞粘附的机械特性
  • 批准号:
    17KK0119
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了