Brownian Transport Through Modulated Potential Energy Landscapes

通过调制势能景观的布朗输运

基本信息

  • 批准号:
    0304906
  • 负责人:
  • 金额:
    $ 41.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2004-10-31
  • 项目状态:
    已结题

项目摘要

This program focuses on how colloidal particles move through extensive potential energy landscapes created with dynamic holographic optical tweezers. Transport through modulated potential energy landscapes is a classic problem in condensed matter physics, with variants arising in systems as diverse as flux flow through type-II superconductors, quasiparticle tunneling in Josephson junctions and procession in biological molecular motors. While much is known about transport in one-dimensional periodic potentials, much more remains to be understood regarding modulated Brownian transport in higher dimensions, particularly in aperiodic, quasiperiodic, random, and time-varying landscapes, all of which figure heavily in natural and industrial settings. Previous efforts to understand such processes have been hampered by the difficulty of controlling most relevant systems' potential energy landscapes while tracking their microscopic components' motions. Dynamic holographic optical tweezers present a unique opportunity to construct arbitrary one-, two-, and three-dimensional potential energy landscapes for micrometer-scale colloidal particles by projecting up to several thousand optical traps in any desired configuration. Unlike most other model systems, colloidal particles' microscopic motions can be tracked with exquisite accuracy using digital video microscopy. The combination of optical manipulation and high-resolution particle tracking provides an extraordinarily flexible and well-characterized model system for studying driven modulated Brownian transport, not only for single particles but also for strongly interacting systems of particles. In addition to the fundamental knowledge gained from such studies, the particular application to mesoscopic transport promises immediate practical applications in nanotechnology, biotechnology, and photonics.How does an electron find its way through the labyrinth of a metallic glass? How does a DNA molecule thread through a gel? Answering such questions requires a new fundamental insights into how objects traverse complicated potential energy landscapes. And the answers will have immediate practical ramifications for fields as diverse as high-temperature superconductivity, drug discovery, nanotechnology and engineering. This program combines state-of-the-art micromanipulation made possible by the recent introduction of holographic optical tweezers (HOTs) with precision digital video microscopy to provide just such insights. The heart of this program is provided by HOT's ability to create arbitrary custom-designed potential energy landscapes from an ordinary beam of laser light. The technique uses computer-generated holograms to craft the beam into thousands of individual optical traps, each of which can be moved independently in three dimensions under computer control. If a single optical trap can be likened to Star Trek's tractor beam, then holographic optical tweezers more closely resemble the holodeck. Micrometer-scale colloidal particles driven through such latticeworks of light trace out solutions to long-standing fundamental physics questions. In so doing, they also provide the basis for practical applications such as sorting proteins, DNA, nanoclusters, and living cells using light. The new techniques on which this program is based were developed with direct involvement of high school and undergraduate students, as well as graduate students and postdocs. These students' unique training in these methods has helped them to land positions in top-rated schools, as well as long-term employment in industry and academia. This program's methods have been patented, and the patents have led to the foundation of a new industry in optical micromanipulation. Such substantive involvement of industry and students at all levels will continue to be a central theme of this program.
该计划的重点是如何通过动态全息光镊创建广泛的势能景观胶体粒子移动。 通过调制势能景观的传输是凝聚态物理学中的一个经典问题,在不同的系统中出现变体,如通过II型超导体的通量流,约瑟夫森结中的准粒子隧穿和生物分子马达中的游行。 虽然我们对一维周期势中的输运有很多了解,但关于更高维度中的调制布朗输运,特别是在非周期、准周期、随机和时变景观中,还有更多的东西有待了解,所有这些都在自然和工业环境中占有重要地位。 以前理解这些过程的努力一直受到难以控制大多数相关系统的势能景观的阻碍,同时跟踪其微观组件的运动。 动态全息光镊提供了一个独特的机会,构建任意的一维,二维和三维的势能景观微米级的胶体粒子,通过投影到几千个光阱在任何所需的配置。 与大多数其他模型系统不同,胶体颗粒的微观运动可以使用数字视频显微镜精确跟踪。 光学操纵和高分辨率粒子跟踪的组合提供了一个非常灵活和良好的特征模型系统,用于研究驱动调制布朗输运,不仅对于单个粒子,而且对于强相互作用的粒子系统。 除了从这些研究中获得的基本知识外,介观输运的特殊应用有望在纳米技术、生物技术和光子学中立即得到实际应用。 DNA分子如何穿过凝胶? 解决这些问题需要对物体如何穿越复杂的势能景观有新的基本见解。 这些问题的答案将对高温超导、药物发现、纳米技术和工程等不同领域产生直接的实际影响。 该计划结合了最先进的显微操作,使最近推出的全息光镊(HOTs)与精确的数字视频显微镜提供这样的见解。 该计划的核心是由HOT的能力,从一个普通的激光束创建任意定制设计的势能景观。 该技术使用计算机生成的全息图将光束制作成数千个独立的光学陷阱,每个陷阱都可以在计算机控制下在三维空间中独立移动。 如果把一个光阱比作《星星迷航》中的牵引光束,那么全息光镊就更像全息甲板。 微米尺度的胶体粒子被驱动穿过这种光的网格,追踪出长期存在的基础物理问题的解决方案。 在这样做的过程中,它们也为实际应用提供了基础,例如使用光分选蛋白质,DNA,纳米团簇和活细胞。 该计划所基于的新技术是在高中和本科生以及研究生和博士后的直接参与下开发的。 这些学生在这些方法方面的独特培训帮助他们在一流学校获得职位,并在工业和学术界长期就业。 该计划的方法已获得专利,这些专利导致了光学显微操作新产业的基础。 行业和各级学生的这种实质性参与将继续成为该计划的中心主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Grier其他文献

Bleeding jejunal phlebectasia in an adolescent: case report
  • DOI:
    10.1016/j.jpedsurg.2007.09.081
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yatin Patel;Pramila Ramani;David Grier;Janet McNally
  • 通讯作者:
    Janet McNally
How do physicians become medical experts? A test of three competing theories: distinct domains, independent influence and encapsulation models
  • DOI:
    10.1007/s10459-017-9784-z
  • 发表时间:
    2017-07-12
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Claudio Violato;Hong Gao;Mary Claire O’Brien;David Grier;E Shen
  • 通讯作者:
    E Shen
95 Epstein-Barr Virus Positive Inflammatory Follicular Dendritic Cell Tumor and Epstein-Barr Virus-Associated Smooth Muscle Tumor Exhibit Distinct Methylation Profiles
95 例爱泼斯坦-巴尔病毒阳性炎症性滤泡树突状细胞肿瘤和爱泼斯坦-巴尔病毒相关平滑肌肿瘤呈现不同的甲基化谱。
  • DOI:
    10.1016/j.labinv.2024.102318
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Andrew Valesano;Anamarija Perry;Jianhong Liu;Carina Dehner;Omer Saeed;David Grier;Alexandra Kovach;Dennis O'Malley;Imran Siddiqi;Erika Moore;Michel Nasr;Suzanne Tucker;Joo Song;Noah Brown;Robert Bell
  • 通讯作者:
    Robert Bell
Impact of Iron Overload On Immune Function for Patients Undergoing Allogeneic Transplants for Hematologic Disorders: Results of Pilot Study
  • DOI:
    10.1016/j.bbmt.2012.11.439
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Seema Naik;Ralph D'Agostino;Mary Ann Knovich;David Grier;Robin Harrelson;Linda McPhail
  • 通讯作者:
    Linda McPhail

David Grier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Grier', 18)}}的其他基金

Analyzing and Organizing Soft Matter with Acoustic Holography
使用声全息分析和组织软物质
  • 批准号:
    2104837
  • 财政年份:
    2021
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
RAPID: Fast Holographic Assay for Viral Infection with Application to COVID-19
RAPID:病毒感染快速全息检测及其在 COVID-19 中的应用
  • 批准号:
    2027013
  • 财政年份:
    2020
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Statistical Mechanics of Colloidal Particles in Optical Force Fields
光学力场中胶体粒子的统计力学
  • 批准号:
    1305875
  • 财政年份:
    2013
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
Colloidal Interactions and Collective Behavior in Non-Conservative Optical Force Fields
非保守光学力场中的胶体相互作用和集体行为
  • 批准号:
    0855741
  • 财政年份:
    2009
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
MRI: Development of a Holographic Fabrication and Characterization Instrument for Materials Research and Educational Outreach
MRI:开发用于材料研究和教育推广的全息制造和表征仪器
  • 批准号:
    0922680
  • 财政年份:
    2009
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Continuous Optical Fractionation of Biological Materials
生物材料的连续光学分离
  • 批准号:
    0629584
  • 财政年份:
    2006
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
Brownian Transport Through Modulated Potential Energy Landscapes
通过调制势能景观的布朗输运
  • 批准号:
    0451589
  • 财政年份:
    2004
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
Continuous Optical Fractionation of Biological Materials
生物材料的连续光学分离
  • 批准号:
    0233971
  • 财政年份:
    2003
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
Interactions, Dynamics and Phase Transitions of Charge-Stabilized Colloidal Suspensions
电荷稳定胶体悬浮液的相互作用、动力学和相变
  • 批准号:
    9730189
  • 财政年份:
    1998
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
Interactions, Dynamics, and Phase Transitions of Colloidal Suspensions
胶体悬浮液的相互作用、动力学和相变
  • 批准号:
    9320378
  • 财政年份:
    1994
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
  • 批准号:
    10085992
  • 财政年份:
    2024
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Collaborative R&D
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Develop the novel targets and immunotherapy-combination agents through targeting nuclear transport receptor
以核转运受体为靶点开发新靶点和免疫治疗联合药物
  • 批准号:
    24K13116
  • 财政年份:
    2024
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PFAS transport through landfill clay liners enhanced with proteins.
PFAS 通过蛋白质增强的垃圾填埋场粘土衬垫进行运输。
  • 批准号:
    IN240100098
  • 财政年份:
    2024
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Discovery Indigenous
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the manifestation mechanism of pancreatitis through the disruption of vesicular transport by BK virus infection
BK病毒感染破坏囊泡运输阐明胰腺炎的表现机制
  • 批准号:
    23K07455
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Improved Geochronology-Based Sediment Provenance Analysis Through Physico-Mechanical Characterization of Zircon Transport
合作研究:通过锆石运移的物理机械表征改进基于地质年代学的沉积物物源分析
  • 批准号:
    2314016
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Disentangling Drivers of Heat and Freshwater Transport through the Indonesian Seas Across Timescales: Insights from Marine Sediments and Model Simulations
解开印度尼西亚海域跨时间尺度的热量和淡水输送的驱动因素:来自海洋沉积物和模型模拟的见解
  • 批准号:
    2303513
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Numerical and experimental investigation of the impact of preferential flow and nonequilibrium thermodynamics on meltwater transport through snow
优先流和非平衡热力学对融水通过雪输送影响的数值和实验研究
  • 批准号:
    2243631
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Precise Control of Ge Nanosheet Channel Structure and Investigation of Carrier Transport through vdW Contacts
Ge纳米片通道结构的精确控制和通过vdW接触的载流子传输研究
  • 批准号:
    23H01474
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了