MRI: Development of a Holographic Fabrication and Characterization Instrument for Materials Research and Educational Outreach
MRI:开发用于材料研究和教育推广的全息制造和表征仪器
基本信息
- 批准号:0922680
- 负责人:
- 金额:$ 76.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0922680GrierNew York U."This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."Technical Summary: This proposal requests support to develop an integrated all-optical instrument for characterizing fluid-borne objects such as colloidal particles, nanowires and biological cells, and for assembling them into three dimensional structures for applications in materials science and engineering. The instrument is based on two complementary techniques that were developed in the Principal Investigator's laboratory: quantitative holographic video microscopy, and dynamic holographic trapping. The former can track hundreds of moving objects simultaneously with nanometer resolution in three dimensions, while simultaneously measuring their dimensions and optical properties. The latter can trap hundreds of microscopic objects independently and organize them into any specified three-dimensional structure. Together, these core technologies provide unprecedented control over the microscopic world. Optimized optical and mechanical design will enable the proposed instrument to characterize and process materials that are too sensitive or too challenging for existing proof-of-concept instruments. Consequently, it will have immediate applications for rapid prototyping of soft-matter-based photonic, electronic and optical electronic devices, and also will be used for micromechanical assays of bacterial biofilms. Its accessible layout and anticipated ease of use also will facilitate rapid adoption for fundamental research in physics and biophysics. The proposed instrument will be developed and operated out of New York University?s Center for Soft Matter Research, and will serve as a core facility for NYU?s recently inaugurated Materials Research Science and Engineering Center. Its open and modular design and robust computer-driven interface will be ideal for hands-on demonstrations during regularly scheduled K-12 classroom visits to the CSMR laboratories, and will be featured in the award-winning Scientific Frontiers educational outreach program at NYU.Non-Technical Summary: Assembling microscopic building blocks into three-dimensional functional structures is one of the outstanding challenges of materials science. Picking the right objects out of chemically synthesized mixtures, putting them together, and verifying the outcome has been all but impossible. The proposed instrument addresses the assembly problem by using forces exerted by computer-generated holograms to arrange microscopic fluid-borne objects into any specified three-dimensional configuration. It complements this holographic optical trapping capability with video-rate holographic imaging to track the objects? motions in three dimensions and simultaneously to measure their physical properties, thereby solving the selection and verification problems. Together, holographic micromanipulation and holographic characterization make it possible to build up complex three-dimensional structures from chemically-synthesized components. Immediate applications include assembling optically active colloidal spheres into artificial opals with optically-switchable optical properties, building three-dimensional circuits out of chemically grown nanowires, and crafting microscopic lasers out of colloidal components. The same instrument also will used to study the micromechanical properties of bacterial biofilms. The proposed instrument?s unique combination of capabilities will provide a core facility for New York University?s recently awarded Materials Research Science and Engineering Center. It also will take center stage in NYU?s award-winning Scientific Frontiers Program, which annually hosts hands-on laboratory tours for hundreds of New York City K-12 schoolchildren. The instrument?s open design, real-time visual feedback and robust computer-driven interface will encourage students of all ages to reach into the microscopic world and explore.
0922680GrierNew York University“该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。”技术总结:该提案请求支持开发一种集成的全光学仪器,用于表征胶体颗粒、纳米线和生物细胞等流体载体,并将它们组装成三维结构,用于材料科学和工程中的应用。该仪器基于首席调查员实验室开发的两项互补技术:定量全息视频显微镜和动态全息捕捉。前者可以在三维空间以纳米分辨率同时跟踪数百个运动物体,同时测量它们的尺寸和光学性质。后者可以独立捕获数百个微观物体,并将它们组织成任何特定的三维结构。总而言之,这些核心技术提供了对微观世界前所未有的控制。优化的光学和机械设计将使拟议的仪器能够表征和处理对现有概念验证仪器过于敏感或过于具有挑战性的材料。因此,它将立即应用于基于软物质的光子、电子和光学电子器件的快速成型,并将用于细菌生物膜的微机械分析。其易于使用的布局和预期的易用性也将促进物理和生物物理学基础研究的快速采用。拟议中的仪器将由纽约大学S软物质研究中心开发和运营,并将作为纽约大学S最近成立的材料研究科学与工程中心的核心设施。其开放的模块化设计和强大的计算机驱动界面将是定期安排的K-12课堂访问CSMR实验室期间动手演示的理想选择,并将在纽约大学屡获殊荣的科学前沿教育推广计划中亮相。非技术总结:将微观构建块组装成三维功能结构是材料科学的突出挑战之一。从化学合成的混合物中挑选合适的物体,将它们放在一起,并验证结果几乎是不可能的。所提出的仪器通过使用计算机生成的全息图施加的力来解决组装问题,以将微观的流体携带的物体排列成任何指定的三维形状。它补充了这种全息光学捕捉能力与视频率全息成像,以跟踪对象?三维运动并同时测量其物理性质,从而解决了选择和验证问题。全息微操作和全息表征结合在一起,使得从化学合成的成分建立复杂的三维结构成为可能。直接的应用包括将光学活性胶体球组装成具有光学可切换光学特性的人造蛋白石,用化学生长的纳米线建造三维电路,以及用胶体组件制作微型激光。该仪器还将用于研究细菌生物膜的微观机械特性。建议的仪器?S独特的能力组合将为纽约大学提供核心设施?S最近授予材料科学与工程研究中心。它还将成为纽约大学S获奖的科学前沿项目的中心舞台,该项目每年为纽约市数以百计的K-12学童举办动手实验室之旅。S的开放式设计、实时视觉反馈和强大的计算机驱动界面将鼓励所有年龄段的学生进入微观世界进行探索。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Grier其他文献
Bleeding jejunal phlebectasia in an adolescent: case report
- DOI:
10.1016/j.jpedsurg.2007.09.081 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:
- 作者:
Yatin Patel;Pramila Ramani;David Grier;Janet McNally - 通讯作者:
Janet McNally
How do physicians become medical experts? A test of three competing theories: distinct domains, independent influence and encapsulation models
- DOI:
10.1007/s10459-017-9784-z - 发表时间:
2017-07-12 - 期刊:
- 影响因子:3.300
- 作者:
Claudio Violato;Hong Gao;Mary Claire O’Brien;David Grier;E Shen - 通讯作者:
E Shen
95 Epstein-Barr Virus Positive Inflammatory Follicular Dendritic Cell Tumor and Epstein-Barr Virus-Associated Smooth Muscle Tumor Exhibit Distinct Methylation Profiles
95 例爱泼斯坦-巴尔病毒阳性炎症性滤泡树突状细胞肿瘤和爱泼斯坦-巴尔病毒相关平滑肌肿瘤呈现不同的甲基化谱。
- DOI:
10.1016/j.labinv.2024.102318 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.200
- 作者:
Andrew Valesano;Anamarija Perry;Jianhong Liu;Carina Dehner;Omer Saeed;David Grier;Alexandra Kovach;Dennis O'Malley;Imran Siddiqi;Erika Moore;Michel Nasr;Suzanne Tucker;Joo Song;Noah Brown;Robert Bell - 通讯作者:
Robert Bell
Impact of Iron Overload On Immune Function for Patients Undergoing Allogeneic Transplants for Hematologic Disorders: Results of Pilot Study
- DOI:
10.1016/j.bbmt.2012.11.439 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
Seema Naik;Ralph D'Agostino;Mary Ann Knovich;David Grier;Robin Harrelson;Linda McPhail - 通讯作者:
Linda McPhail
David Grier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Grier', 18)}}的其他基金
Analyzing and Organizing Soft Matter with Acoustic Holography
使用声全息分析和组织软物质
- 批准号:
2104837 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Standard Grant
RAPID: Fast Holographic Assay for Viral Infection with Application to COVID-19
RAPID:病毒感染快速全息检测及其在 COVID-19 中的应用
- 批准号:
2027013 - 财政年份:2020
- 资助金额:
$ 76.78万 - 项目类别:
Standard Grant
Statistical Mechanics of Colloidal Particles in Optical Force Fields
光学力场中胶体粒子的统计力学
- 批准号:
1305875 - 财政年份:2013
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Colloidal Interactions and Collective Behavior in Non-Conservative Optical Force Fields
非保守光学力场中的胶体相互作用和集体行为
- 批准号:
0855741 - 财政年份:2009
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Continuous Optical Fractionation of Biological Materials
生物材料的连续光学分离
- 批准号:
0629584 - 财政年份:2006
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Brownian Transport Through Modulated Potential Energy Landscapes
通过调制势能景观的布朗输运
- 批准号:
0451589 - 财政年份:2004
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Continuous Optical Fractionation of Biological Materials
生物材料的连续光学分离
- 批准号:
0233971 - 财政年份:2003
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Brownian Transport Through Modulated Potential Energy Landscapes
通过调制势能景观的布朗输运
- 批准号:
0304906 - 财政年份:2003
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Interactions, Dynamics and Phase Transitions of Charge-Stabilized Colloidal Suspensions
电荷稳定胶体悬浮液的相互作用、动力学和相变
- 批准号:
9730189 - 财政年份:1998
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
Interactions, Dynamics, and Phase Transitions of Colloidal Suspensions
胶体悬浮液的相互作用、动力学和相变
- 批准号:
9320378 - 财政年份:1994
- 资助金额:
$ 76.78万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of a holographic volumetric display that displays human-sized 3D images.
开发可显示人体大小 3D 图像的全息立体显示器。
- 批准号:
23H03513 - 财政年份:2023
- 资助金额:
$ 76.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Realtime Holographic Display System with Wide Viewing Angle and Large Area Size
宽视角大面积实时全息显示系统的研制
- 批准号:
22H00535 - 财政年份:2022
- 资助金额:
$ 76.78万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Mobile Holographic Microscope using deep learning
利用深度学习开发移动全息显微镜
- 批准号:
21K17760 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a technology pipeline to port new & existing video games to holographic and AR platforms
开发技术管道以移植新的
- 批准号:
10012133 - 财政年份:2021
- 资助金额:
$ 76.78万 - 项目类别:
Responsive Strategy and Planning
Development of a first-of-its-kind Augmented Reality Holographic Headset prototype demonstrating the potential of computer generated holography to revolutionise AR and digital display industries, through best-in-class optics and ergonomics
开发首个增强现实全息耳机原型,展示计算机生成全息技术通过一流的光学和人体工程学彻底改变 AR 和数字显示行业的潜力
- 批准号:
49491 - 财政年份:2020
- 资助金额:
$ 76.78万 - 项目类别:
Study
Investigation and development of user interfaces and graphics for 3D video games played on holographic devices
研究和开发全息设备上玩的 3D 视频游戏的用户界面和图形
- 批准号:
508738-2017 - 财政年份:2017
- 资助金额:
$ 76.78万 - 项目类别:
Applied Research and Development Grants - Level 1
Development of novel visualization techniques for medical images using a holographic volumetric display
使用全息体积显示器开发医学图像的新型可视化技术
- 批准号:
1949183 - 财政年份:2017
- 资助金额:
$ 76.78万 - 项目类别:
Studentship
Development of holographic X-ray diffraction imaging method and application to structural study of cell division in an unicellular algae
全息X射线衍射成像方法的发展及其在单细胞藻类细胞分裂结构研究中的应用
- 批准号:
16K21621 - 财政年份:2016
- 资助金额:
$ 76.78万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and Validation of a Holographic Waveguide-based Oculometer for Objective and Comprehensive Oculomotor Disorder Assessment
基于全息波导的眼科计的开发和验证,用于客观和全面的动眼障碍评估
- 批准号:
9360550 - 财政年份:2016
- 资助金额:
$ 76.78万 - 项目类别:
Development of a fiber-based, holographic coherent anti-Stokes Raman scattering microscope for label-free imaging
开发基于光纤的全息相干反斯托克斯拉曼散射显微镜,用于无标记成像
- 批准号:
8834488 - 财政年份:2015
- 资助金额:
$ 76.78万 - 项目类别: