Brownian Transport Through Modulated Potential Energy Landscapes

通过调制势能景观的布朗输运

基本信息

  • 批准号:
    0451589
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-09 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

This program focuses on how colloidal particles move through extensive potential energy landscapes created with dynamic holographic optical tweezers. Transport through modulated potential energy landscapes is a classic problem in condensed matter physics, with variants arising in systems as diverse as flux flow through type-II superconductors, quasiparticle tunneling in Josephson junctions and procession in biological molecular motors. While much is known about transport in one-dimensional periodic potentials, much more remains to be understood regarding modulated Brownian transport in higher dimensions, particularly in aperiodic, quasiperiodic, random, and time-varying landscapes, all of which figure heavily in natural and industrial settings. Previous efforts to understand such processes have been hampered by the difficulty of controlling most relevant systems' potential energy landscapes while tracking their microscopic components' motions. Dynamic holographic optical tweezers present a unique opportunity to construct arbitrary one-, two-, and three-dimensional potential energy landscapes for micrometer-scale colloidal particles by projecting up to several thousand optical traps in any desired configuration. Unlike most other model systems, colloidal particles' microscopic motions can be tracked with exquisite accuracy using digital video microscopy. The combination of optical manipulation and high-resolution particle tracking provides an extraordinarily flexible and well-characterized model system for studying driven modulated Brownian transport, not only for single particles but also for strongly interacting systems of particles. In addition to the fundamental knowledge gained from such studies, the particular application to mesoscopic transport promises immediate practical applications in nanotechnology, biotechnology, and photonics.How does an electron find its way through the labyrinth of a metallic glass? How does a DNA molecule thread through a gel? Answering such questions requires a new fundamental insights into how objects traverse complicated potential energy landscapes. And the answers will have immediate practical ramifications for fields as diverse as high-temperature superconductivity, drug discovery, nanotechnology and engineering. This program combines state-of-the-art micromanipulation made possible by the recent introduction of holographic optical tweezers (HOTs) with precision digital video microscopy to provide just such insights. The heart of this program is provided by HOT's ability to create arbitrary custom-designed potential energy landscapes from an ordinary beam of laser light. The technique uses computer-generated holograms to craft the beam into thousands of individual optical traps, each of which can be moved independently in three dimensions under computer control. If a single optical trap can be likened to Star Trek's tractor beam, then holographic optical tweezers more closely resemble the holodeck. Micrometer-scale colloidal particles driven through such latticeworks of light trace out solutions to long-standing fundamental physics questions. In so doing, they also provide the basis for practical applications such as sorting proteins, DNA, nanoclusters, and living cells using light. The new techniques on which this program is based were developed with direct involvement of high school and undergraduate students, as well as graduate students and postdocs. These students' unique training in these methods has helped them to land positions in top-rated schools, as well as long-term employment in industry and academia. This program's methods have been patented, and the patents have led to the foundation of a new industry in optical micromanipulation. Such substantive involvement of industry and students at all levels will continue to be a central theme of this program.
该程序的重​​点是胶体颗粒如何通过动态全息光学镊子产生的广泛势能景观进行移动。 通过调制势能景观的运输是凝聚态物理物理学的一个经典问题,在流经II型超导体的系统中会产生变体,Josephson连接中的Quasiparticle隧道和生物分子运动中的游动。 尽管对一维周期电位的运输知之甚少,但对于更高维度的调制布朗运输,尤其是在基质,准层状,随机和时变的景观中,还有更多的了解,这些景观在自然和工业环境中都很大。 以前的理解此类过程的努力受到控制最相关的系统势能景观的困难,同时跟踪其微观组件的动作。 动态全息光学镊子提供了一个独特的机会,可以通过在任何所需构型中投影多达几千个光学陷阱来构建微米尺度胶体颗粒的任意单,二维和三维势能景观。 与大多数其他模型系统不同,可以使用数字视频显微镜以精确的精度跟踪胶体颗粒的微观运动。 光学操纵和高分辨率粒子跟踪的组合提供了一种非常灵活且特征良好的模型系统,用于研究驱动的调制布朗运输,这不仅用于单个颗粒,而且用于强烈的粒子相互作用系统。 除了从此类研究中获得的基本知识外,对介质运输的特殊应用也有望在纳米技术,生物技术和光子学上立即实用应用。 DNA分子如何通过凝胶螺纹? 回答此类问题需要对物体如何穿越复杂的势能景观的新基本见解。 答案将对像高温超导性,药物发现,纳米技术和工程等多样化的领域产生立即的实践影响。 该程序结合了最先进的微观计算,这是由于最近引入全息光学镊子(HOTS)和精确的数字视频显微镜,以提供此类见解。 该程序的核心是HOT能够从普通的激光光束创建任意定制设计的势能景观的能力。 该技术使用计算机生成的全息图将光束制作成数千个单独的光学陷阱,每个陷阱都可以在计算机控制下以三个维度独立移动。 如果可以将单个光学陷阱比作《星际迷航》的拖拉机光束,则全息光学镊子更类似于Holodeck。 千分尺尺度的胶体颗粒通过此类光线的晶格驱动,从而将解决方案带到了长期存在的基本物理问题上。 这样一来,它们还为使用光的蛋白质,DNA,纳米群和活细胞等实用应用提供了基础。 该计划所基于的新技术是通过直接参与高中和本科生以及研究生和博士学位的直接参与的。 这些学生在这些方法中的独特培训帮助他们在最高的学校以及行业和学术界的长期就业中占据了职位。 该计划的方法已获得专利,专利为光学微观计算的新行业提供了基础。 各级行业和学生的实质性参与将继续是该计划的核心主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Grier其他文献

Bleeding jejunal phlebectasia in an adolescent: case report
  • DOI:
    10.1016/j.jpedsurg.2007.09.081
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yatin Patel;Pramila Ramani;David Grier;Janet McNally
  • 通讯作者:
    Janet McNally
Impact of Iron Overload On Immune Function for Patients Undergoing Allogeneic Transplants for Hematologic Disorders: Results of Pilot Study
  • DOI:
    10.1016/j.bbmt.2012.11.439
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Seema Naik;Ralph D'Agostino;Mary Ann Knovich;David Grier;Robin Harrelson;Linda McPhail
  • 通讯作者:
    Linda McPhail

David Grier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Grier', 18)}}的其他基金

Analyzing and Organizing Soft Matter with Acoustic Holography
使用声全息分析和组织软物质
  • 批准号:
    2104837
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RAPID: Fast Holographic Assay for Viral Infection with Application to COVID-19
RAPID:病毒感染快速全息检测及其在 COVID-19 中的应用
  • 批准号:
    2027013
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Mechanics of Colloidal Particles in Optical Force Fields
光学力场中胶体粒子的统计力学
  • 批准号:
    1305875
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Colloidal Interactions and Collective Behavior in Non-Conservative Optical Force Fields
非保守光学力场中的胶体相互作用和集体行为
  • 批准号:
    0855741
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
MRI: Development of a Holographic Fabrication and Characterization Instrument for Materials Research and Educational Outreach
MRI:开发用于材料研究和教育推广的全息制造和表征仪器
  • 批准号:
    0922680
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Continuous Optical Fractionation of Biological Materials
生物材料的连续光学分离
  • 批准号:
    0629584
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Continuous Optical Fractionation of Biological Materials
生物材料的连续光学分离
  • 批准号:
    0233971
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Brownian Transport Through Modulated Potential Energy Landscapes
通过调制势能景观的布朗输运
  • 批准号:
    0304906
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Interactions, Dynamics and Phase Transitions of Charge-Stabilized Colloidal Suspensions
电荷稳定胶体悬浮液的相互作用、动力学和相变
  • 批准号:
    9730189
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Interactions, Dynamics, and Phase Transitions of Colloidal Suspensions
胶体悬浮液的相互作用、动力学和相变
  • 批准号:
    9320378
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

WASH1通过调节LCK由内体向细胞膜运输控制T-ALL细胞生存的作用机制研究
  • 批准号:
    82300195
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KIF18B通过形成KIF18B-MFN1-CYLD蛋白复合物加速线粒体沿微管运输并激活一碳代谢促进NPC转移的机制研究
  • 批准号:
    82203799
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
KIF18B通过形成KIF18B-MFN1-CYLD蛋白复合物加速线粒体沿微管运输并激活一碳代谢促进NPC转移的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FMRP蛋白通过调控RNP颗粒形成及运输影响脆性X染色体综合征神经元兴奋性的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FMRP蛋白通过调控RNP颗粒形成及运输影响脆性X染色体综合征神经元兴奋性的机制研究
  • 批准号:
    32100769
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Project GANESHA - Getting power Access to rural-Nepal through thermally cooled battery Energy storage for transport and Home Applications
GANESHA 项目 - 通过热冷却电池为尼泊尔农村地区提供电力 用于运输和家庭应用的储能
  • 批准号:
    10085992
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Develop the novel targets and immunotherapy-combination agents through targeting nuclear transport receptor
以核转运受体为靶点开发新靶点和免疫治疗联合药物
  • 批准号:
    24K13116
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PFAS transport through landfill clay liners enhanced with proteins.
PFAS 通过蛋白质增强的垃圾填埋场粘土衬垫进行运输。
  • 批准号:
    IN240100098
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Indigenous
Collaborative Research: Improved Geochronology-Based Sediment Provenance Analysis Through Physico-Mechanical Characterization of Zircon Transport
合作研究:通过锆石运移的物理机械表征改进基于地质年代学的沉积物物源分析
  • 批准号:
    2314016
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了