Harmonic analysis and partial differential equations: Sharp geometric inequalities, fully nonlinear equations and applications

调和分析和偏微分方程:尖锐的几何不等式、完全非线性方程和应用

基本信息

  • 批准号:
    0500853
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research projects involves topics that use harmonic analysis and partial differential equations. We will focus on finding the sharp constants and extremals for Moser-Trudinger-Onofri inequalities on the Heisenberg group, stratified groups, the complex sphere and more general CR manifolds Also to derive sharp Sobolev inequalities on the Heisenberg and more general stratified groups, and optimal geometric inequalities for high order differential operators. The project will use these to study applications in CR geometry, including the regularity of degenerate elliptic Monge-Ampere equations and also parabolic Monge-Ampere equations arising from the Gauss curvature flow and the regularity of fully nonlinear equations in the sub-elliptic setting. We shall also study the properties and applications of convex functions in such settings, some geometric embedding inequalities such as the Poincare and Sobolev inequalities associated with high order sub-elliptic derivatives and their applications to partial differential equations. The successful completion of the proposed projects in sub-elliptic structures requires substantially new techniques and innovative ideas which are not available in the classical cases.The proposed projects have applications to control theory, optimization, human vision and other topics in sciences and engineering.
建议的研究项目涉及使用谐波分析和偏微分方程的主题。我们将着重于在Heisenberg群、分层群、复球面和更一般的CR流形上寻找Moser-Trudinger-Onofri不等式的尖锐常数和极值,并在Heisenberg群和更一般的分层群上推导尖锐Sobolev不等式,以及高阶微分算子的最优几何不等式。该项目将使用这些来研究CR几何中的应用,包括由高斯曲率流产生的退化椭圆型蒙日-安培方程和抛物型蒙日-安培方程的正则性,以及亚椭圆设置下完全非线性方程的正则性。我们还将研究凸函数在这种情况下的性质和应用,一些几何嵌入不等式,如与高阶次椭圆导数相关的庞加莱不等式和索博列夫不等式,以及它们在偏微分方程中的应用。在亚椭圆结构中成功完成拟议的项目需要大量的新技术和创新思想,这些技术和创新思想在经典情况下是不可用的。拟建项目应用于控制理论、优化、人类视觉等科学与工程领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guozhen Lu其他文献

Duality theory of weighted Hardy spaces with arbitrary number of parameters
具有任意数量参数的加权Hardy空间的对偶理论
  • DOI:
    10.1515/forum-2012-0018
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guozhen Lu;Zhuoping Ruan
  • 通讯作者:
    Zhuoping Ruan
Conformally Covariant Boundary Operators and Sharp Higher Order Sobolev Trace Inequalities on Poincar\'e-Einstein Manifolds
庞加莱爱因斯坦流形上的共形协变边界算子和尖锐高阶 Sobolev 迹不等式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Flynn;Guozhen Lu;Qiaohua Yang
  • 通讯作者:
    Qiaohua Yang
Multiparameter Hardy space theory on Carnot-Carathodory spaces and product spaces of homogeneous type.
Carnot-Carath 的多参数 Hardy 空间理论
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongsheng Han;Ji Li;Guozhen Lu
  • 通讯作者:
    Guozhen Lu
Existence and nonexistence of extremals for critical Adams inequalities in R4 and Trudinger-Moser inequalities in R2
R4 中临界 Adams 不等式和 R2 中 Trudinger-Moser 不等式的极值存在和不存在
  • DOI:
    10.1016/j.aim.2020.107143
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Chen;Guozhen Lu;Maochun Zhu
  • 通讯作者:
    Maochun Zhu
Caffarelli-Kohn-Nirenberg identities, inequalities and their stabilities
Caffarelli-Kohn-Nirenberg 恒等式、不平等及其稳定性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Cazacu;J. Flynn;N. Lam;Guozhen Lu
  • 通讯作者:
    Guozhen Lu

Guozhen Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guozhen Lu', 18)}}的其他基金

Multiparameter Harmonic analysis and sharp geometric inequalities with applications to PDEs
多参数调和分析和锐几何不等式及其在偏微分方程中的应用
  • 批准号:
    1700918
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiparameter Harmonic analysis and sharp geometric inequalities with applications to PDEs
多参数调和分析和锐几何不等式及其在偏微分方程中的应用
  • 批准号:
    1301595
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic analysis and partial differential equations: sharp geometric inequalities, fully nonlinear equations and applications
调和分析和偏微分方程:尖锐的几何不等式、完全非线性方程和应用
  • 批准号:
    0901761
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
International workshop in Fourier analysis and partial differential equations; Beijing, China, December 2008
傅里叶分析和偏微分方程国际研讨会;
  • 批准号:
    0823812
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
International Conference in Harmonic Analysis and Partial Differential Equations with Applications
调和分析和偏微分方程及其应用国际会议
  • 批准号:
    0723627
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-CBMS Regional Research Conference, Free boundary problems in partial differential equations and applications, May 18-22, 2003
NSF-CBMS 区域研究会议,偏微分方程中的自由边界问题及其应用,2003 年 5 月 18-22 日
  • 批准号:
    0225758
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiparameter Hardy Space, CR-Yamabe Problems and Nonisotropic Sobolev spaces on the Heisenberg and stratified groups, L^p estimates, unique continuation and covering lemmas
海森堡和分层群上的多参数 Hardy 空间、CR-Yamabe 问题和非各向同性 Sobolev 空间、L^p 估计、唯一延拓和覆盖引理
  • 批准号:
    0196349
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiparameter Hardy Space, CR-Yamabe Problems and Nonisotropic Sobolev spaces on the Heisenberg and stratified groups, L^p estimates, unique continuation and covering lemmas
海森堡和分层群上的多参数 Hardy 空间、CR-Yamabe 问题和非各向同性 Sobolev 空间、L^p 估计、唯一延拓和覆盖引理
  • 批准号:
    9970352
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations and Harmonic Analysis for the Sublaplacians
数学科学:Sublaplacian 的偏微分方程和调和分析
  • 批准号:
    9622996
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    9315963
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
  • 批准号:
    31971981
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
  • 批准号:
    31972542
  • 批准年份:
    2019
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
  • 批准号:
    71473155
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
  • 批准号:
    41101116
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
  • 批准号:
    2324706
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
  • 批准号:
    2247185
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    2153794
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
  • 批准号:
    2154031
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
  • 批准号:
    DP200101065
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
  • 批准号:
    DP190100970
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
  • 批准号:
    RGPIN-2015-06688
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了