Conference on: Quantum Groups, Algebraic Groups and Related Topics; Summer 2009, Beijing, China

会议主题:量子群、代数群及相关主题;

基本信息

  • 批准号:
    0913405
  • 负责人:
  • 金额:
    $ 4.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-01 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTPrincipal Investigator: Helminck, Aloysius G.Proposal Number: DMS - 0913405 Institution: North Carolina State University Title: Conference on: Quantum Groups, Algebraic Groups and Related TopicsQuantum groups have become a comprehensive and mainstream research area in mathematics with numerous applications in mathematics and theoretical physics. It involves research from a broad range of fields, including many types of algebras, like vertex algebras, Kac-Moody Lie algebras, Hecke algebras, etc. Much of the theory of quantum groups is based on results developed for algebraic groups and Lie groups and the interface of these areas continues to provide a base of new research opportunities. The scope of the areas of quantum and algebraic groups is very broad and expertise in the various aspects has been developed all over the world. In order for the subject to continue to develop and flourish it is important that there are periodic international conferences bringing together specialists from all over the world together with young mathematicians and graduate students seeking to specialize in these rich areas. This will create opportunities for exchange of ideas and to expose new frontiers.This award supports the travel expenses of a group of research mathematicians and graduate students from USA universities to join researchers from Asia, Australia and Europe in a timely international conference on "Quantum groups, Algebraic groups and related topics" at the Peking University, Beijing, China during July 18-23, 2009. Some of the participants will also attend a second related conference hosted at the Chern Institute of Mathematics, Nankai University, Tianjin during July 23-27, 2009 on "Quantum algebras and Physics.'' There are more than half dozen major mathematical departments and research centers in the region such as Peking University, Tsinghua University, Beijing Normal University, Institute of Mathematics, etc. A large number of graduate students from local universities and research centers will attend this conference. The senior invited international experts will outline the future directions of research in quantum groups and algebraic groups. The informal sessions will provide ample opportunity for junior researchers and graduate students to interact with other experts in the field. This conference will bring unprecedented opportunities for graduate students and young researchers to gain insights on the important area of quantum groups and algebraic groups. In particular, the USA graduate students will gain international working experience. It will also help strengthen the ongoing collaboration between USA and Chinese mathematicians.
摘要主要研究者:Helminck,Aloysius G.提案编号:DMS - 0913405机构:北卡罗来纳州州立大学标题:会议:量子群,代数群和相关主题量子群已经成为数学中一个全面和主流的研究领域,在数学和理论物理中有许多应用。它涉及研究从广泛的领域,包括许多类型的代数,如顶点代数,卡茨-穆迪李代数,赫克代数等量子群的理论大部分是基于结果开发的代数群和李群和这些领域的接口继续提供一个基础的新的研究机会。量子和代数群领域的范围是非常广泛的,在各个方面的专业知识已经在世界各地发展。为了使这一主题继续发展和繁荣,重要的是定期举行国际会议,汇集来自世界各地的专家与年轻的数学家和研究生一起寻求专门从事这些丰富的领域。该奖项将资助一批来自美国大学的数学家和研究生与来自亚洲、澳大利亚和欧洲的研究人员一起参加2009年7月18日至23日在中国北京大学举行的关于“量子群、代数群和相关主题”的国际会议。部分与会者还将参加2009年7月23日至27日在天津南开大学陈省身数学研究所举办的第二次相关会议,会议主题为“量子代数与物理”。“”北京大学、清华大学、北师大、数学研究所等六个以上的地区主要数学系和研究中心,将有大量来自当地大学和研究中心的研究生参加这次会议。邀请的国际资深专家将概述量子群和代数群的未来研究方向。 非正式会议将为初级研究人员和研究生提供与该领域其他专家互动的充分机会。本次会议将为研究生和年轻研究人员带来前所未有的机会,以获得量子群和代数群的重要领域的见解。特别是,美国研究生将获得国际工作经验。这也将有助于加强美国和中国数学家之间正在进行的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aloysius Helminck其他文献

Aloysius Helminck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aloysius Helminck', 18)}}的其他基金

Summer School on Representation Theory
表征理论暑期学校
  • 批准号:
    1137837
  • 财政年份:
    2011
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
REU Site: Modeling and Industrial Applied Mathematics
REU 网站:建模和工业应用数学
  • 批准号:
    1063010
  • 财政年份:
    2011
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
EMSW21-MCTP: Institute for Mathematics at North Carolina State University. (I'M at State)
EMSW21-MCTP:北卡罗来纳州立大学数学研究所。
  • 批准号:
    0943855
  • 财政年份:
    2010
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
US-China Summer School on Representation Theory
中美表征理论暑期学校
  • 批准号:
    1014554
  • 财政年份:
    2010
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Research Scholars Program in Mathematics
数学研究学者计划
  • 批准号:
    0631090
  • 财政年份:
    2006
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Research Experiences for Undergraduates: Modeling and Industrial Applied Mathematics
本科生研究经历:建模与工业应用数学
  • 批准号:
    0552571
  • 财政年份:
    2006
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
EMSW21-MCTP: Institute for Mathematics at North Carolina State University (I'm at State)
EMSW21-MCTP:北卡罗来纳州立大学数学研究所(我在州立大学)
  • 批准号:
    0636568
  • 财政年份:
    2006
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS): Parallel Computer Algebra
数学科学的科学计算研究环境 (SCREMS):并行计算机代数
  • 批准号:
    0532140
  • 财政年份:
    2005
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
  • 批准号:
    23K12955
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum groups and K-theory
量子群和 K 理论
  • 批准号:
    22KJ0618
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Harmonic analysis of q-Laplace operators on quantum groups
量子群上q-拉普拉斯算子的调和分析
  • 批准号:
    23KJ1690
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
  • 批准号:
    2302661
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Operator Modules, Quantum Groups and Quantum Information
算子模块、量子组和量子信息
  • 批准号:
    RGPIN-2017-06275
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
KK-theory, quantum groups, and quaternions
KK 理论、量子群和四元数
  • 批准号:
    RGPIN-2021-02746
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
C*-algebras of Groups and Quantum Groups: Rigidity and Structure Theory
群和量子群的 C* 代数:刚性和结构理论
  • 批准号:
    2155162
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Study of generalized quantum groups by using Weyl groupoids
利用Weyl群形研究广义量子群
  • 批准号:
    22K03225
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了