SHF: Medium: A Collaborative Framework for Developing Green Electronics for Next-Generation Computing Applications

SHF:Medium:为下一代计算应用开发绿色电子的协作框架

基本信息

  • 批准号:
    1162633
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The information technology (IT) industry is confronting an acute problem in the form of increasing power and energy consumption by electronic products, which is projected to have dramatic impact on the global energy crisis. This is partly due to the fact that a significant fraction of the energy consumption in the IT industry results from the computing components? (such as servers) energy need, which in turn, depends on the power consumption of the various integrated circuits in these components. Hence, designing low-power and energy-efficient integrated circuits or Green Electronics constitutes a key area for sustaining the irreversible growth of the global IT industry. Achieving energy-efficiency is also of critical importance for all electronic circuits used in mobile applications for increasing the battery life. Energy-efficiency can be achieved by lowering both dynamic and leakage power consumption. However, lowering of power using traditional techniques becomes increasingly difficult beyond the 22 nanometer technology node. This is due to the fact that in such nanoscale devices, the most effective knob used for lowering power, namely the power supply voltage, cannot be scaled as rapidly as in earlier technology generations without incurring significant performance penalty arising from the inability to simultaneously reduce the threshold voltage. Simultaneous scaling of threshold voltage, which is essential for maintaining a certain ON to OFF ratio of the device currents (that is essential in digital circuits where the transistors are used as switches), leads to a substantial increase in the sub-threshold leakage (OFF state) current, owing to the non-abrupt nature of the switching characteristics of MOSFETs, thereby making the devices very energy inefficient. This project aims to address this critical issue at the most fundamental level by designing circuits and systems enabled by novel electronic devices whose switching behaviors are near-ideal, that is, they can move from ON to OFF state and vice-versa, almost instantly. In particular, the PIs plan to design and fabricate ultra energy-efficient heterojunction Tunneling Field-Effect Transistors (T-FETs) that employ a fundamentally different injection mechanism in the form of band-to-band tunneling (BTBT) to achieve near ideal switching. They also plan to develop necessary modeling/simulation, and optimization techniques for these devices, and explore circuits and systems specifically enabled by these devices to demonstrate unprecedented power and energy savings in electronic products. This collaborative four-year project brings together an outstanding team of scientists for addressing one of the fundamental limitations of MOSFETs and is expected to have wide implications for the semiconductor and electronics industries. The project is expected to help digital switches and circuits (including high-performance microprocessors) to attain their ultimate limits (in terms of density and performance) and also open new opportunities in embedded memories (including DRAMs and Flash) and remote sensors, thereby maintaining U.S. competitiveness in the worldwide semiconductor market. Broader impact of the proposed research is also well recognized, particularly in the light of emerging 3-D ICs, where integration of low leakage and relatively temperature insensitive T-FETs could be exploited to build next-generation high-performance and low-power integrated circuits. The overall program also ties research to education at all levels (K-12, undergraduate, graduate, continuing-ed) partly via participation in programs designed by education professionals, besides focusing on recruitment and retention of underrepresented groups in nanoscience and engineering.
信息技术(IT)产业正面临着电子产品的功率和能量消耗增加的形式的尖锐问题,这预计将对全球能源危机产生巨大影响。这在一定程度上是因为IT行业的能源消耗中有很大一部分来自计算组件。(such作为服务器)的能量需求,这又取决于这些组件中的各种集成电路的功耗。因此,设计低功耗和高能效的集成电路或绿色电子产品是维持全球IT行业不可逆转增长的关键领域。 实现能量效率对于用于移动的应用中的所有电子电路来说对于增加电池寿命也是至关重要的。 可以通过降低动态功耗和泄漏功耗来实现能效。然而,使用传统技术降低功率在22纳米技术节点之外变得越来越困难。 这是由于在这样的纳米级器件中,用于降低功率的最有效的调节器(即电源电压)不能像早期技术代中那样快速地缩放而不招致由于不能同时降低阈值电压而引起的显著性能损失。 由于MOSFET的开关特性的非突变性质,阈值电压的同时缩放(其对于保持器件电流的特定导通与关断比(其在晶体管用作开关的数字电路中是必不可少的)是必不可少的)导致亚阈值泄漏(关断状态)电流的显著增加,从而使得器件非常能量低效。该项目旨在通过设计由新型电子设备实现的电路和系统,在最基本的层面上解决这个关键问题,这些电子设备的开关行为接近理想,也就是说,它们几乎可以立即从ON状态切换到OFF状态,反之亦然。 特别是,PI计划设计和制造超节能异质结Tunnel场效应晶体管(T-FET),该晶体管采用带到带隧穿(BTBT)形式的根本不同的注入机制,以实现接近理想的开关。他们还计划为这些器件开发必要的建模/仿真和优化技术,并探索由这些器件专门支持的电路和系统,以展示电子产品前所未有的功耗和节能效果。这个为期四年的合作项目汇集了一支杰出的科学家团队,旨在解决MOSFET的一个基本限制,预计将对半导体和电子行业产生广泛的影响。 该项目预计将帮助数字开关和电路(包括高性能微处理器)达到其极限(在密度和性能方面),并在嵌入式存储器(包括DRAM和闪存)和远程传感器方面开辟新的机会,从而保持美国在全球半导体市场的竞争力。 拟议研究的更广泛影响也得到了广泛认可,特别是鉴于新兴的3-D IC,其中低泄漏和相对温度不敏感的T-FET的集成可用于构建下一代高性能和低功耗集成电路。整个计划还将研究与各级教育(K-12,本科,研究生,继续教育)联系起来,部分通过参与教育专业人士设计的计划,除了专注于招聘和保留纳米科学和工程中代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaustav Banerjee其他文献

Localized heating effects and scaling of sub-0.18 micron CMOS devices
0.18 微米以下 CMOS 器件的局部热效应和缩放
University of California, Santa Barbara
加州大学圣塔芭芭拉分校
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee
Intimate contacts
亲密接触
  • DOI:
    10.1038/nmat4121
  • 发表时间:
    2014-11-20
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Debdeep Jena;Kaustav Banerjee;Grace Huili Xing
  • 通讯作者:
    Grace Huili Xing
An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs
由 2D-TMD 隧道 FET 支持的神经拟态计算超节能硬件平台
  • DOI:
    10.1038/s41467-024-46397-3
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Arnab Pal;Zichun Chai;Junkai Jiang;W. Cao;Mike Davies;Vivek De;Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee
One-Dimensional Edge Contacts to Two-Dimensional Transition-Metal Dichalcogenides: Uncovering the Role of Schottky-Barrier Anisotropy in Charge Transport across math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll">msub>mrow> mi>Mo/mi>mi mathvariant="normal">S/mi>/mrow>
一维边缘接触到二维过渡金属二硫化物:揭示肖特基势垒各向异性在数学电荷传输中的作用 xmlns="http://www.w3.org/1998/Math/MathML" display="inline
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Parto;Arnab Pal;Tanmay Chavan;Kunjesh Agashiwala;Chao;W. Cao;Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee

Kaustav Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaustav Banerjee', 18)}}的其他基金

EAGER: Exploration of 3D-Transistors with 2D-TMDs for Ultimate Miniaturization
EAGER:探索具有 2D-TMD 的 3D 晶体管以实现终极小型化
  • 批准号:
    2332341
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
FET:Small: An Integrated Unipolar-0.5T0.5R RRAM Crossbar Array for Neuromorphic Computing
FET:小型:用于神经形态计算的集成单极 0.5T0.5R RRAM 交叉阵列
  • 批准号:
    2132820
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF:EAGER: 2D Layered Heterostructure based Tunnel Field-Effect Transistors (TFETs) and Circuits
NSF:EAGER:基于 2D 分层异质结构的隧道场效应晶体管 (TFET) 和电路
  • 批准号:
    1550230
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF:Small: A CAD Framework for Coupled Electrical-Thermal Modeling of Interconnects in 3D Integrated Circuits
SHF:Small:3D 集成电路互连电热耦合建模的 CAD 框架
  • 批准号:
    0917385
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPA-DA-T: A Collaborative Framework for Design and Fabrication of Metallic Carbon Nanotube based Interconnect Structures for VLSI Circuits and Systems Applications
CPA-DA-T:用于设计和制造用于超大规模集成电路和系统应用的基于金属碳纳米管的互连结构的协作框架
  • 批准号:
    0811880
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A CAD Framework for Multiscale Electrothermal Modeling and Simulation of Non-Classical CMOS Devices
非经典 CMOS 器件多尺度电热建模和仿真的 CAD 框架
  • 批准号:
    0541465
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了