EAGER: Exploration of 3D-Transistors with 2D-TMDs for Ultimate Miniaturization
EAGER:探索具有 2D-TMD 的 3D 晶体管以实现终极小型化
基本信息
- 批准号:2332341
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Continued miniaturization of metal-oxide-semiconductor field-effect-transistors (MOSFETs) to yield unremitting improvements in system integration density, performance, and energy-efficiency has necessitated the exploration of alternative novel device architectures. Gate-all-around (GAA) architecture is one of such promising alternatives to the state-of-the-art FinFET (essentially a double-gate MOSFET), that with its superior gate control over the channel, reduced short-channel effects, and increased ON-current, can sustain transistor miniaturization down to few nanometer channel lengths if implemented with suitable channel materials. In this regard, the implementation of GAA architectures with emerging layered two-dimensional materials (2DM) can significantly enhance the capabilities of the GAA transistors, compared to implementations with conventional semiconductors such as Si, because of the several advantages that 2DM offers. These benefits include excellent electrostatics (gate control of channel charge) afforded by the atomic thinness and pristine interfaces of the 2DM body that enable channel length scaling without sacrificing gate control, uniform body thicknesses offering low device-to-device variability and robust device performance, large bandgap and moderate carrier effective mass (compared to Si) offering suppressed OFF-current. The PI is a pioneer in the field of 2D-CMOS and has made major contributions to every aspect of these transistors - from fundamental charge injection and transport theory to the design and experimental demonstrations of some of the best transistors reported in the literature. The two-year exploratory project will involve the design, fabrication, and characterization of 2DM based GAA FETs (including nanosheet FETs) to extend the scalability of the MOSFET and thereby sustain Moore’s Law. The application space of the project includes every conceivable electronic product that runs on MOSFETs including microprocessors and memories. Therefore the project is expected to have wide implications for the semiconductor and electronics industries. Moreover, the PI will use various well established educational platforms to disseminate the research results and to make them available to a wide range of users. The overall project also ties research to education at all levels involving K-12, undergraduates, graduates, and minorities, partly via participation in programs designed by education professionals, besides focusing on recruitment and retention of underrepresented groups in nanoscience and engineering.The project will employ a distinctive atoms-to-applications theory to study and demonstrate the promise of employing two-dimensional materials (2DM) in designing gate-all-around (GAA) field-effect-transistor (FET) architectures, which is radically different from the approaches pursued till date. While theoretical simulations from the PI’s group guided by first principles quantum transport theory – non equilibrium Green’s function (NEGF), have demonstrated that suitably designed planar 2D-FETs with 2D transition-metal-dichalcogenide (TMD) as the channel material can outperform Si counterparts in both low-standby-power and high-performance transistor designs for sub-10 nm channel lengths, such a scaling and performance analysis study for GAA architectures have not been carried out yet. Fundamentally, the process and growth optimizations required to realize such functional device architecture are also at their infancy and have not been specifically tailored for this architecture. The project therefore includes a detailed performance and scalability analysis for both current and capacitance metrics of 2DM enabled 3D GAA transistor architectures (such as nanosheet FETs) employing first principles density functional theory (DFT) and NEGF transport formalism; employment (and improvement) of advanced contact engineering for efficiently contacting stacked n-/p-2DM channels in 3D geometry; identification of optimal high-κ dielectric stack for integration into the 2D-TMD GAA transistor architecture; and finally, fabrication and realistic demonstration of single- to multi-stack channel proof-of-concept GAA transistor architectures permitted by available nanofabrication facilities. The interdisciplinary nature of the research project, spanning fundamental 2D materials physics, device design, and nano-fabrication techniques, as well as theoretical simulations and compact modeling, will ensure that the proposed research ideas are feasible and tailored to deliver optimal results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属氧化物半导体场效应晶体管(MOSFET)的持续小型化以在系统集成密度、性能和能量效率方面产生不懈的改进,使得有必要探索替代的新颖器件架构。栅极全包围(GAA)架构是最先进的FinFET(本质上是双栅极MOSFET)的这样一种有前景的替代方案之一,其具有对沟道的上级栅极控制、减少的短沟道效应和增加的导通电流,如果用合适的沟道材料实现,则可以将晶体管小型化维持到几纳米沟道长度。在这方面,由于2DM提供的几个优点,与使用诸如Si的常规半导体的实现相比,使用新兴的分层二维材料(2DM)的GAA架构的实现可以显著增强GAA晶体管的能力。这些优点包括由2DM主体的原子薄度和原始界面提供的优异的静电(沟道电荷的栅极控制),其使得能够在不牺牲栅极控制的情况下实现沟道长度缩放,均匀的主体厚度提供低的器件到器件的可变性和稳健的器件性能,大的带隙和中等的载流子有效质量(与Si相比)提供抑制的截止电流。PI是2D-CMOS领域的先驱,对这些晶体管的各个方面都做出了重大贡献-从基本的电荷注入和传输理论到文献中报道的一些最佳晶体管的设计和实验演示。这个为期两年的探索性项目将涉及基于2DM的GAA FET(包括纳米片FET)的设计、制造和表征,以扩展MOSFET的可扩展性,从而维持摩尔定律。该项目的应用领域包括在MOSFET上运行的所有可能的电子产品,包括微处理器和存储器。因此,该项目预计将对半导体和电子行业产生广泛影响。此外,PI将利用各种完善的教育平台来传播研究成果,并将其提供给广泛的用户。整个项目还将研究与涉及K-12,本科生,研究生和少数民族的各级教育联系起来,部分通过参与教育专业人士设计的计划,该项目将采用独特的原子应用理论来研究和证明使用二维材料(2DM)的前景在设计栅极全包围(GAA)场效应晶体管(FET)架构,这是从根本上不同的方法追求到目前为止。虽然来自PI小组的由第一原理量子输运理论-非平衡绿色函数(NEGF)指导的理论模拟已经证明,以2D过渡金属二硫属化物(TMD)作为沟道材料的适当设计的平面2D-FET可以在用于亚10 nm沟道长度的低待机功率和高性能晶体管设计中优于Si对应物,这种针对GAA体系结构的缩放和性能分析研究还没有被执行。从根本上说,实现这种功能器件架构所需的工艺和生长优化也处于起步阶段,尚未专门针对这种架构进行定制。因此,该项目包括对支持2DM的3D GAA晶体管架构的电流和电容指标的详细性能和可扩展性分析(例如纳米片FET)采用第一原理密度泛函理论(DFT)和NEGF传输形式主义;用于在3D几何形状中有效接触堆叠的n-/p-2DM沟道的先进接触工程(和改进);识别用于集成到2D-TMD GAA晶体管架构中的最佳高κ电介质堆叠;以及最后,制造和现实演示可用纳米制造设施所允许的单到多堆叠沟道概念验证GAA晶体管架构。该研究项目的跨学科性质,跨越基础2D材料物理,器件设计和纳米制造技术,以及理论模拟和紧凑建模,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaustav Banerjee其他文献
Localized heating effects and scaling of sub-0.18 micron CMOS devices
0.18 微米以下 CMOS 器件的局部热效应和缩放
- DOI:
10.1109/iedm.2001.979598 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Eric Pop;Kaustav Banerjee;P. Sverdrup;Robert W. Dutton;Kenneth E. Goodson - 通讯作者:
Kenneth E. Goodson
University of California, Santa Barbara
加州大学圣塔芭芭拉分校
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Kaustav Banerjee - 通讯作者:
Kaustav Banerjee
Intimate contacts
亲密接触
- DOI:
10.1038/nmat4121 - 发表时间:
2014-11-20 - 期刊:
- 影响因子:38.500
- 作者:
Debdeep Jena;Kaustav Banerjee;Grace Huili Xing - 通讯作者:
Grace Huili Xing
An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs
由 2D-TMD 隧道 FET 支持的神经拟态计算超节能硬件平台
- DOI:
10.1038/s41467-024-46397-3 - 发表时间:
2024 - 期刊:
- 影响因子:16.6
- 作者:
Arnab Pal;Zichun Chai;Junkai Jiang;W. Cao;Mike Davies;Vivek De;Kaustav Banerjee - 通讯作者:
Kaustav Banerjee
One-Dimensional Edge Contacts to Two-Dimensional Transition-Metal Dichalcogenides: Uncovering the Role of Schottky-Barrier Anisotropy in Charge Transport across math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll">msub>mrow> mi>Mo/mi>mi mathvariant="normal">S/mi>/mrow>
一维边缘接触到二维过渡金属二硫化物:揭示肖特基势垒各向异性在数学电荷传输中的作用 xmlns="http://www.w3.org/1998/Math/MathML" display="inline
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
K. Parto;Arnab Pal;Tanmay Chavan;Kunjesh Agashiwala;Chao;W. Cao;Kaustav Banerjee - 通讯作者:
Kaustav Banerjee
Kaustav Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaustav Banerjee', 18)}}的其他基金
FET:Small: An Integrated Unipolar-0.5T0.5R RRAM Crossbar Array for Neuromorphic Computing
FET:小型:用于神经形态计算的集成单极 0.5T0.5R RRAM 交叉阵列
- 批准号:
2132820 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF:EAGER: 2D Layered Heterostructure based Tunnel Field-Effect Transistors (TFETs) and Circuits
NSF:EAGER:基于 2D 分层异质结构的隧道场效应晶体管 (TFET) 和电路
- 批准号:
1550230 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Medium: A Collaborative Framework for Developing Green Electronics for Next-Generation Computing Applications
SHF:Medium:为下一代计算应用开发绿色电子的协作框架
- 批准号:
1162633 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SHF:Small: A CAD Framework for Coupled Electrical-Thermal Modeling of Interconnects in 3D Integrated Circuits
SHF:Small:3D 集成电路互连电热耦合建模的 CAD 框架
- 批准号:
0917385 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPA-DA-T: A Collaborative Framework for Design and Fabrication of Metallic Carbon Nanotube based Interconnect Structures for VLSI Circuits and Systems Applications
CPA-DA-T:用于设计和制造用于超大规模集成电路和系统应用的基于金属碳纳米管的互连结构的协作框架
- 批准号:
0811880 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
A CAD Framework for Multiscale Electrothermal Modeling and Simulation of Non-Classical CMOS Devices
非经典 CMOS 器件多尺度电热建模和仿真的 CAD 框架
- 批准号:
0541465 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
V-LF-Spiro3D: Low-field 3D magnetic resonance spirometry for advanced regional exploration of respiratory diseases
V-LF-Spiro3D:低场 3D 磁共振肺量计,用于呼吸系统疾病的高级区域探索
- 批准号:
10063498 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
EU-Funded
Exploration of the strong coupling regime between the 3D cavity and super conducting quantum bits for low-mass wave-like dark matter searches
探索 3D 腔和超导量子比特之间的强耦合机制,用于低质量波状暗物质搜索
- 批准号:
23K13093 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of highly reactive complexes of 3d transition metals by use of silicon-based multidentate ligands and exploration of catalytic functions of these complexes
利用硅基多齿配体开发高活性3d过渡金属配合物并探索这些配合物的催化功能
- 批准号:
22K05123 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconstruction de surface et modélisation 3D : exploration des représentations implicites
表面重建和模型化 3D:探索隐式表达
- 批准号:
RGPIN-2021-02553 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction de surface et modélisation 3D : exploration des représentations implicites
表面重建和 3D 建模:隐含表示的探索
- 批准号:
RGPIN-2021-02553 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Exploration of the novel therapeutic target for lung cancer based on the analysis of the characteristics of tumor cells derived from 3D culture
基于3D培养肿瘤细胞特性分析探索肺癌新治疗靶点
- 批准号:
21K08902 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploration of Interaction between Custom 3D-Printed Implant Surfaces and Bone
定制 3D 打印植入物表面与骨骼之间相互作用的探索
- 批准号:
567524-2021 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Ultrafast 3D structural dynamics for exploration of photoresponsive materials
用于探索光响应材料的超快 3D 结构动力学
- 批准号:
20H01832 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Career Exploration Lab: 3D Printing and STEM Engagement for High School Students with Visual Impairments and their Educators
职业探索实验室:针对视力障碍高中生及其教育工作者的 3D 打印和 STEM 参与
- 批准号:
1949458 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Field demonstration experiment of MIMO type 3D directional borehole radar for geothermal exploration
MIMO型3D定向钻孔雷达地热勘探现场演示实验
- 批准号:
18K05019 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




