FET:Small: An Integrated Unipolar-0.5T0.5R RRAM Crossbar Array for Neuromorphic Computing

FET:小型:用于神经形态计算的集成单极 0.5T0.5R RRAM 交叉阵列

基本信息

  • 批准号:
    2132820
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The processing capabilities of the human brain are unparalleled compared to what is achievable with conventional computing techniques, particularly for applications targeted toward pattern recognition, and needs dedicated hardware to be emulated. Neuromorphic (NM) computing hardware, which aims to mimic these neuro-architectural aspects of the human brain by having the memory- and processing-centers co-located (compute-in-memory), can deliver processing and computations on an energy scale that is orders of magnitude more efficient than the conventional von-Neumann architecture where data are transferred between separate memory and processing elements. Therefore, NM computing can enable significant computational advances for a variety of real-world applications. The compute-in-memory hardware is typically implemented using a crossbar array layout of resistive random-access memory (RRAM) devices, where each memory device is connected in series with a control transistor, in what is commonly referred to as a one-transistor one-resistor (1T1R) cell format. Although this format ensures the memory devices work reliably and efficiently, it increases the device count and circuit area. The PI has recently demonstrated a novel "0.5T0.5R" memory cell architecture where a control device - a transistor - and a memory element - a RRAM - are integrated into a single hybrid device by judicious use of two-dimensional (2D) materials with resulting substantial improvements in the scaling, density, and device/circuit performance. The three-year project involves the design, fabrication, and characterization of crossbar arrays of these devices to implement compute-in-memory hardware, thereby enabling demonstration of large-scale NM computing circuits. The application space of NM computing is targeted towards both machine learning and pattern recognition and can be used in a multitude of real-world applications not limited to self-driving cars and big data, thereby enabling a much broader scientific impact. Moreover, significant improvements in the energy-efficiency of NM and in-memory computing paradigms will enable their wide-scale deployment and enable computing hardware to keep pace with the rapid growth in data intensive applications in spite of CMOS technology scaling limitations. Thus, the project is expected to have wide implications for the semiconductor and electronics industries. Moreover, the PI will use various well established educational platforms to disseminate the research results and to make them available to a wide range of users. The overall project also ties research to education at all levels involving K-12, undergraduates, graduates, and minorities, partly via participation in programs designed by education professionals, besides focusing on recruitment and retention of underrepresented groups in nanoscience and engineering.This project involves the conceptualization, design optimization, and hardware demonstration of novel and energy-efficient neuromorphic/in-memory computing circuits enabled by innovative large-scale crossbar array implementation of a novel 0.5T0.5R memory device. Experimental work is being carried out with close modeling and simulation support to optimize the device and array design. More specifically, development of compact models with the aid of numerical and ab-initio simulations to help in device optimization and developing neural learning algorithms, to be subsequently implemented in the crossbar array, is being carried out in tandem. The interdisciplinary nature of the research project, spanning fundamental 2D materials science, device design, and nano-fabrication techniques, as well as theoretical simulations and system architecture design, ensures that the proposed research ideas are feasible and tailored to deliver optimal neural learning and inference objectives. Significant improvements over recently demonstrated NM computing devices are proposed, employing large-area 2D materials synthesis techniques and configuring the hybrid device to provide further scalability and ease of energy-efficiently addressing array elements. Finally, hardware neural tasks pertaining to real-world applications of pattern recognition, cybersecurity, and implementing physically unclonable functions are being demonstrated. The successful completion of this project is intended to advance the development of a revolutionary new class of NM computing systems that efficiently emulate biological information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与传统计算技术相比,人类大脑的处理能力是无与伦比的,特别是对于以模式识别为目标的应用程序,并且需要专用硬件来模拟。神经形态(NM)计算硬件旨在通过将记忆中心和处理中心放在一起(内存中的计算)来模拟人脑的这些神经结构方面,它可以在能量尺度上提供处理和计算,比传统的冯-诺伊曼架构(在传统的冯-诺伊曼架构中,数据在单独的存储和处理元素之间传输)效率高几个数量级。因此,纳米计算可以为各种实际应用实现显著的计算进步。存储器中的计算硬件通常使用阻性随机存取存储器(RRAM)设备的横杆阵列布局来实现,其中每个存储器设备与控制晶体管串联连接,通常称为一晶体管一电阻(1T1R)单元格式。虽然这种格式保证了存储设备可靠高效地工作,但它增加了设备数量和电路面积。PI最近展示了一种新颖的“0.5T0.5R”存储单元架构,其中通过明智地使用二维(2D)材料,将控制器件(晶体管)和存储元件(RRAM)集成到单个混合器件中,从而在缩放、密度和器件/电路性能方面取得了实质性的改进。这个为期三年的项目包括设计、制造和表征这些器件的横条阵列,以实现内存中的计算硬件,从而实现大规模纳米计算电路的演示。纳米计算的应用空间以机器学习和模式识别为目标,可以用于众多现实世界的应用,而不仅仅局限于自动驾驶汽车和大数据,从而实现更广泛的科学影响。此外,纳米和内存计算范式在能效方面的显著改进将使其能够大规模部署,并使计算硬件能够跟上数据密集型应用的快速增长,尽管CMOS技术的规模限制。因此,该项目预计将对半导体和电子工业产生广泛的影响。此外,民意调查将利用各种完善的教育平台,传播研究成果,并向广大用户提供。整个项目还将研究与包括K-12、本科生、研究生和少数族裔在内的各级教育联系起来,部分通过参与由教育专业人士设计的项目,此外还将重点放在招收和留住纳米科学和工程领域代表性不足的群体上。该项目涉及新型节能神经形态/内存计算电路的概念化,设计优化和硬件演示,该电路由新型0.5T0.5R存储器件的创新大规模交叉棒阵列实现。实验工作正在密切建模和仿真支持下进行,以优化设备和阵列设计。更具体地说,在数值模拟和从头算模拟的帮助下,紧凑模型的开发有助于设备优化和开发神经学习算法,随后将在交叉杆阵列中实施,正在同步进行。该研究项目的跨学科性质,涵盖了基础的二维材料科学、器件设计和纳米制造技术,以及理论模拟和系统架构设计,确保了所提出的研究思路是可行的,并量身定制,以提供最佳的神经学习和推理目标。提出了对最近展示的纳米计算设备的重大改进,采用大面积二维材料合成技术,并配置混合设备,以提供进一步的可扩展性和易于节能寻址阵列元素。最后,演示了与模式识别、网络安全和实现物理不可克隆功能的实际应用相关的硬件神经任务。该项目的成功完成旨在推动革命性的新型纳米计算系统的发展,有效地模拟生物信息处理。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two-dimensional materials enabled next-generation low-energy compute and connectivity
  • DOI:
    10.1557/s43577-022-00270-0
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Arnab K. Pal;Kunjesh Agashiwala;Junkai Jiang;Dujiao Zhang;Tanmay Chavan;Ankit Kumar;C. Yeh;W. Cao;K. Banerjee
  • 通讯作者:
    Arnab K. Pal;Kunjesh Agashiwala;Junkai Jiang;Dujiao Zhang;Tanmay Chavan;Ankit Kumar;C. Yeh;W. Cao;K. Banerjee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaustav Banerjee其他文献

Localized heating effects and scaling of sub-0.18 micron CMOS devices
0.18 微米以下 CMOS 器件的局部热效应和缩放
University of California, Santa Barbara
加州大学圣塔芭芭拉分校
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee
Intimate contacts
亲密接触
  • DOI:
    10.1038/nmat4121
  • 发表时间:
    2014-11-20
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Debdeep Jena;Kaustav Banerjee;Grace Huili Xing
  • 通讯作者:
    Grace Huili Xing
An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs
由 2D-TMD 隧道 FET 支持的神经拟态计算超节能硬件平台
  • DOI:
    10.1038/s41467-024-46397-3
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Arnab Pal;Zichun Chai;Junkai Jiang;W. Cao;Mike Davies;Vivek De;Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee
One-Dimensional Edge Contacts to Two-Dimensional Transition-Metal Dichalcogenides: Uncovering the Role of Schottky-Barrier Anisotropy in Charge Transport across math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll">msub>mrow> mi>Mo/mi>mi mathvariant="normal">S/mi>/mrow>
一维边缘接触到二维过渡金属二硫化物:揭示肖特基势垒各向异性在数学电荷传输中的作用 xmlns="http://www.w3.org/1998/Math/MathML" display="inline
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Parto;Arnab Pal;Tanmay Chavan;Kunjesh Agashiwala;Chao;W. Cao;Kaustav Banerjee
  • 通讯作者:
    Kaustav Banerjee

Kaustav Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kaustav Banerjee', 18)}}的其他基金

EAGER: Exploration of 3D-Transistors with 2D-TMDs for Ultimate Miniaturization
EAGER:探索具有 2D-TMD 的 3D 晶体管以实现终极小型化
  • 批准号:
    2332341
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF:EAGER: 2D Layered Heterostructure based Tunnel Field-Effect Transistors (TFETs) and Circuits
NSF:EAGER:基于 2D 分层异质结构的隧道场效应晶体管 (TFET) 和电路
  • 批准号:
    1550230
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Medium: A Collaborative Framework for Developing Green Electronics for Next-Generation Computing Applications
SHF:Medium:为下一代计算应用开发绿色电子的协作框架
  • 批准号:
    1162633
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF:Small: A CAD Framework for Coupled Electrical-Thermal Modeling of Interconnects in 3D Integrated Circuits
SHF:Small:3D 集成电路互连电热耦合建模的 CAD 框架
  • 批准号:
    0917385
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPA-DA-T: A Collaborative Framework for Design and Fabrication of Metallic Carbon Nanotube based Interconnect Structures for VLSI Circuits and Systems Applications
CPA-DA-T:用于设计和制造用于超大规模集成电路和系统应用的基于金属碳纳米管的互连结构的协作框架
  • 批准号:
    0811880
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
A CAD Framework for Multiscale Electrothermal Modeling and Simulation of Non-Classical CMOS Devices
非经典 CMOS 器件多尺度电热建模和仿真的 CAD 框架
  • 批准号:
    0541465
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CC* Integration-Small: M2- NET: An Integrated Access and Backhaul Millimeter-wave Wireless Network for Campus Connectivity and Research
CC* Integration-Small:M2-NET:用于校园连接和研究的集成接入和回程毫米波无线网络
  • 批准号:
    2346621
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Integrated fragment-based phenotypic screening and chemoproteomics for identification of novel small cell lung cancer-specific targets
基于片段的表型筛选和化学蛋白质组学相结合,用于鉴定新型小细胞肺癌特异性靶标
  • 批准号:
    10577507
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
SHF: Small: Testing and Design-for-Test Techniques for Monolithic 3D Integrated Circuits
SHF:小型:单片 3D 集成电路的测试和测试设计技术
  • 批准号:
    2309822
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
  • 批准号:
    2322713
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Development of hybrid thermal model for small bodies integrated shape and roughness models
开发小型物体集成形状和粗糙度模型的混合热模型
  • 批准号:
    23K03478
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
  • 批准号:
    2312456
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Integrated blood and radiomic subtyping to guide immunotherapy treatment selection and early response assessment in metastatic non-small cell lung cancer
综合血液和放射组学亚型,指导转移性非小细胞肺癌的免疫治疗选择和早期反应评估
  • 批准号:
    10734127
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了