High-bandwidth, single-molecule bioelectronics using a multiplexed, field-effect sensing platform
使用多路复用场效应传感平台的高带宽单分子生物电子学
基本信息
- 批准号:1202320
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last two decades, fluorescent techniques have become the standard method for experimentally probing the conformational dynamics of molecules at the single-molecule level both in vitro and in vivo. Though fluorescent probes are highly specific, they use light as an intermediary between the biological system and measurement electronics, which results in fundamental constraints in resolution and bandwidth due to the countable number of photons emitted. Single-molecule kinetic measurements of fast biomolecular processes are often difficult or impossible to access through fluorescent techniques, as they lack the necessary temporal resolution. Long time scales are frequently also difficult and sometimes impossible to access due to fluorophore photobleaching. In this multidisciplinary project, charge-based field-effect-transistor (FET) electronic single-molecule methods are developed for the analysis of biomolecular interactions in in vitro biomolecular systems. These techniques will dramatically improve the temporal dynamic range for single-molecule studies, enabling bandwidths approaching 10 MHz as well as the ability to examine single-molecule events over hours of observation time. Integration of these electronic sensors with complementary metal-oxide-semiconductor (CMOS) integrated circuits will enable the high throughput techniques that currently characterize many current, fluorescence-based approaches. This project focusses on two specific single-molecule studies involving nucleic acid and protein interactions which demonstrate the benefits of improved temporal resolution. State-of-the-art single-molecule techniques have been actively employed to study these systems; as a result, they represent an interesting vehicle to apply the FET devices proposed here.Intellectual Merit: This research program seeks to combine these efforts and is centered around four specific research aims: (1) optimization of field-effect-transistor (FET) devices for high-bandwidth single-molecule sensing; (2) CMOS integration of these field-effect sensors into a large multiplexed platform; (3) single-molecule FET studies of riboswitch folding and function; and (4) single-molecule studies of the dynamics of lactose repressor protein interacting with DNA. Specifically, in the first two Aims, we develop a nanoscale FET platform for single-molecule detection, enabling bandwidths approaching 10 MHz with massively parallel, high-bandwidth integrated CMOS electronics as well as the ability to examine single-molecule events over hours of observation time. The second two Aims focus on target application of these sensors in the study of nucleic acids and proteins.Broader Impacts: In this project, the PIs will train graduate and undergraduate students in a truly cross-disciplinary research environment combining biochemistry, nanofabrication, circuit design, and biological applications. The proposed program will also impact curricula, as described below, allowing us to influence a broader group of students. Based on an established track record of the PIs, significant effort will be made for K-12 outreach by systematically training highly motivated high school students within the program and also enhancing the interactions with local K-12 educators to introduce front-line research to students, especially targeting underrepresented groups. We also intend broader impacts related to the commercialization and dissemination of this proposal?s technology.
在过去的二十年里,荧光技术已经成为在体外和体内单分子水平上实验探测分子构象动力学的标准方法。虽然荧光探针具有高度的特异性,但它们使用光作为生物系统和测量电子设备之间的中介,这导致了由于发射的光子数量众多而在分辨率和带宽方面的根本限制。快速生物分子过程的单分子动力学测量通常很难或不可能通过荧光技术获得,因为它们缺乏必要的时间分辨率。由于荧光团的光漂白,长时间的鳞片通常也很难获得,有时甚至不可能获得。在这个多学科的项目中,发展了基于电荷的场效应晶体管(FET)电子单分子方法来分析体外生物分子系统中的生物分子相互作用。这些技术将极大地改善单分子研究的时间动态范围,使带宽接近10 MHz,并能够在几个小时的观测时间内检查单分子事件。这些电子传感器与互补的金属氧化物半导体(CMOS)集成电路的集成将实现目前许多基于荧光的方法所特有的高通量技术。该项目集中于两项涉及核酸和蛋白质相互作用的具体单分子研究,这两项研究证明了提高时间分辨率的好处。最先进的单分子技术已经被积极地应用于这些系统的研究,因此,它们是应用这里提出的FET器件的一个有趣的载体。智能优点:本研究计划寻求结合这些努力,并围绕四个具体的研究目标:(1)用于高带宽单分子传感的场效应晶体管(FET)器件的最优化;(2)将这些场效应传感器集成到一个大型多路复用平台中;(3)单分子FET研究核糖开关的折叠和功能;(4)乳糖抑制蛋白与DNA相互作用的单分子动力学研究。具体地说,在前两个目标中,我们开发了一个用于单分子检测的纳米级FET平台,使带宽能够接近10 MHz,具有大规模并行的高带宽集成CMOS电子设备,以及能够在几个小时的观察时间内检查单分子事件。第二个目标集中在这些传感器在核酸和蛋白质研究中的目标应用。广泛的影响:在这个项目中,PI将在一个真正的跨学科研究环境中培养研究生和本科生,该环境结合了生物化学、纳米制造、电路设计和生物应用。拟议的课程还将影响课程,如下所述,使我们能够影响更广泛的学生群体。基于PIs的既定记录,将通过在该计划内系统地培训积极性高的高中生,并加强与当地K-12教育工作者的互动,向学生介绍一线研究,特别是针对代表性不足的群体,为K-12外展做出重大努力。我们还打算对S技术这一提议的商业化和传播产生更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Shepard其他文献
How many SARS-CoV-2 “viroporins” are really ion channels?
有多少新冠病毒“孔蛋白”真正是离子通道?
- DOI:
10.1038/s42003-022-03669-2 - 发表时间:
2022-08-25 - 期刊:
- 影响因子:5.100
- 作者:
Neil L. Harrison;Geoffrey W. Abbott;Martina Gentzsch;Andrei Aleksandrov;Anna Moroni;Gerhard Thiel;Stephen Grant;Colin G. Nichols;Henry A. Lester;Andreas Hartel;Kenneth Shepard;David Cabrera Garcia;Masayuki Yazawa - 通讯作者:
Masayuki Yazawa
Kenneth Shepard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Shepard', 18)}}的其他基金
PFI-TT: Wearable Noninvasive Brain Imaging with Near-Infrared Light Based on Time-Domain Diffuse Optical Tomography
PFI-TT:基于时域漫射光学断层扫描的可穿戴式近红外光无创脑成像
- 批准号:
2141006 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAPID: Comparative functional characterization of strain-specific CoV E-proteins and involvement in host-specific virulence
RAPID:毒株特异性 CoV E 蛋白的比较功能特征及其与宿主特异性毒力的关系
- 批准号:
2030700 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Planning IUCRC at Columbia University: Center for Biological Applications of Solid-State Systems (C-BASS)
哥伦比亚大学规划 IUCRC:固态系统生物应用中心 (C-BASS)
- 批准号:
1822143 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CBET-EPSRC: Hybrid organic-CMOS devices for optogenetic stimulation and lens-free fluorescence imaging of the brain
CBET-EPSRC:用于脑部光遗传学刺激和无透镜荧光成像的混合有机 CMOS 设备
- 批准号:
1706207 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: Hardware and Software for Spike Detection and Sorting in Massively Parallel Electrophysiological Recording Systems for the Brain
BIGDATA:协作研究:IA:用于大脑大规模并行电生理记录系统中尖峰检测和排序的硬件和软件
- 批准号:
1546296 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
IDBR: TYPE A: Large-scale CMOS electrochemical imagers for the study of metabolites in multcellular films
IDBR:A 型:用于研究多细胞薄膜中代谢物的大型 CMOS 电化学成像仪
- 批准号:
1353553 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
I-Corps: High Frame-rate Fluorescence Lifetime Imaging Microscopy
I-Corps:高帧率荧光寿命成像显微镜
- 批准号:
1243899 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
IDBR: CMOS cameras for high-frame-rate time-correlated single-photon counting
IDBR:用于高帧率时间相关单光子计数的 CMOS 相机
- 批准号:
1063315 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
On-chip magnetics for power management and delivery in multicore processors
用于多核处理器中电源管理和传输的片上磁性器件
- 批准号:
0903466 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
IGERT: Optical techniques for actuation, sensing, and imaging of biological systems
IGERT:用于生物系统驱动、传感和成像的光学技术
- 批准号:
0801530 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
活细胞单分子成像定量研究EGFR内吞途径命运选择
- 批准号:32000557
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
全基因组micro-RNA种子区结合序列SNP标志体系与乳腺癌发病风险的关联及相关功能研究
- 批准号:81172762
- 批准年份:2011
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
- 批准号:
EP/X031934/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
- 批准号:
LE240100086 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
- 批准号:
ES/Y010655/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
- 批准号:
24K18359 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the coordination of DNA mismatch repair using live-cell single-molecule imaging
使用活细胞单分子成像了解 DNA 错配修复的协调
- 批准号:
BB/Y001567/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2350466 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
- 批准号:
BB/X007294/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant