Solid-state nanopore-based MMP/ADAM profiling for early cancer detection

基于固态纳米孔的 MMP/ADAM 分析用于早期癌症检测

基本信息

  • 批准号:
    1708596
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical:This award by the Biomaterials Program in the Division of Materials Research to the Illinois Institute of Technology is to develop next-generation of biomaterials based on two groups of biocatalysts, namely MMPs (matrix metalloproteinases) and ADAMs (a disintegrin and metalloproteinases) for possible applications in sensing and other technologies. MMPs and ADAMs are enzymes that are responsible for extracellular matrix degradation and tissue remodeling, and play important roles in various biological, physiological, and pathological processes. They are currently under intensive investigation as novel biomarkers and potential therapeutic targets for the early detection and possible treatment of human cancers. However, the current MMP/ADAM assays suffer from low specificity and poor selectivity, which results in their limited utility for any applications. This project offers a new label-free strategy, which combines nanopore sensing and substrate-based proteinase assay, to accomplish highly selective and sensitive measurement of the activity of MMPs/ADAMs. The proposed studies are expected to lead to a better understanding of molecular and ionic transport, as well as to develop a versatile tool for various applications, including biosensing, studying covalent and non-covalent bonding interactions, investigating biomolecular folding and unfolding, and exploring enzyme kinetics. In addition to research, educational and outreach components are also an integral part of this project. The newest research findings from this work will be incorporated in classroom teaching for the benefit of students not directly involved in this research. The PI will recruit undergraduate and graduate students (especially Hispanic and African American minority groups) to participate in the research through established local programs. The PI will disseminate nanopore sensing technology by organizing interdisciplinary symposiums to promote idea exchange and facilitate national & international collaborations among peers and general public. Technical:This project will explore a new strategy to measure the activities of MMPs (matrix metalloproteinases) and ADAMs (a disintegrin and metalloproteinases), and this is accomplished by real-time monitoring of the ionic current modulations caused by the protease-substrate peptide interactions in the nanopore. By taking advantage of both the substrate specificity and the substrate cleavage sites, the nanopore sensor offers a potential to significantly improve the selectivity and accuracy of the MMPs/ADAMs assays. The three objectives of this project will be: 1) to investigate various factors which affect peptide transport in a nano-channel, and gain understanding of the underlying mechanism; 2) to study a simple non-array-based methodology for the multiplex detection and measurement of activities of MMPs/ADAMs to improve assay efficiency, and reduce the sensor manufacturing and assay cost; and 3) to develop a portable solid-state nanopore-based protease detection technique for potential mobile-lab detection of cancer biomarkers for point-of-care applications. The studies are expected to have broad impact on a variety of areas where analyses of proteases are important, such as biology, nanotechnology, pharmaceutical industry, toxicology in general, and biosensing. The components of the educational plan include: incorporation of research findings into classroom teaching; active recruitment of undergraduate and graduate students from underrepresented groups; establishment of a summer scholar research program for high school students; and organizing interdisciplinary symposiums. This interdisciplinary project offers an ideal training opportunity for all participants, particularly with respect to future career opportunities.
非技术性:伊利诺伊理工学院材料研究部生物材料项目的这一奖项旨在开发基于两组生物催化剂的下一代生物材料,即MMP(基质金属蛋白酶)和亚当斯(去整合素和金属蛋白酶),用于传感和其他技术的可能应用。MMPs和亚当斯是负责细胞外基质降解和组织重塑的酶,并且在各种生物、生理和病理过程中发挥重要作用。它们目前正在作为新的生物标志物和潜在的治疗靶点进行深入研究,用于人类癌症的早期检测和可能的治疗。然而,目前的MMP/ADAM测定具有低特异性和差选择性,这导致其对于任何应用的有限效用。该项目提供了一种新的无标记策略,该策略结合了纳米孔传感和基于底物的蛋白酶测定,以实现MMPs/亚当斯活性的高选择性和灵敏度测量。拟议的研究预计将导致更好地了解分子和离子的运输,以及开发一个多功能的工具,用于各种应用,包括生物传感,研究共价和非共价键的相互作用,调查生物分子的折叠和展开,并探索酶动力学。除研究外,教育和外联部分也是该项目的一个组成部分。 这项工作的最新研究成果将被纳入课堂教学中,以使没有直接参与这项研究的学生受益。PI将招募本科生和研究生(特别是西班牙裔和非洲裔美国少数民族)通过既定的当地计划参与研究。PI将通过组织跨学科研讨会来传播纳米孔传感技术,以促进思想交流,并促进同行和公众之间的国家国际合作。技术:该项目将探索一种新的策略来测量MMP(基质金属蛋白酶)和亚当斯(一种去整合素和金属蛋白酶)的活性,这是通过实时监测纳米孔中蛋白酶-底物肽相互作用引起的离子电流调制来实现的。通过利用底物特异性和底物切割位点,纳米孔传感器提供了显著提高MMP/亚当斯测定的选择性和准确性的潜力。本项目的三个目标是:1)研究影响多肽在纳米通道中转运的各种因素,并了解其内在机制; 2)研究一种简单的非阵列化方法,用于MMPs/亚当斯活性的多重检测,以提高检测效率,降低传感器的制造和检测成本;以及3)开发便携式固态基于纳米孔的蛋白酶检测技术,用于护理点应用的癌症生物标志物的潜在移动实验室检测。预计这些研究将对蛋白酶分析非常重要的各种领域产生广泛影响,例如生物学,纳米技术,制药工业,一般毒理学和生物传感。教育计划的组成部分包括:将研究成果纳入课堂教学;积极招收代表性不足群体的本科生和研究生;为高中生设立暑期学者研究方案;组织跨学科研讨会。这个跨学科项目为所有参与者提供了理想的培训机会,特别是在未来的职业机会方面。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Salt-Mediated Nanopore Detection of ADAM-17
  • DOI:
    10.1021/acsabm.8b00689
  • 发表时间:
    2019-01-22
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Chen, Xiaohan;Zhang, Youwen;Guan, Xiyun
  • 通讯作者:
    Guan, Xiyun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiyun Guan其他文献

Nanopore Determination of Nucleic Acids in Whole Blood Based on a Displacement Reaction Strategy
  • DOI:
    10.1016/j.bpj.2019.11.2637
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Liang Wang;Xiaohan Chen;Yunjiao Wang;Shuo Zhou;Deqiang Wang;Xiyun Guan
  • 通讯作者:
    Xiyun Guan
Analytical Strategies with Biological Nanopore: On-pore, off-pore Strategies and application in Biological Fluids
生物纳米孔的分析策略:孔内、孔外策略及其在生物流体中的应用
  • DOI:
    10.1016/j.talanta.2020.121684
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yunjiao Wang;Youwen Zhang;Xiaohan Chen;Xiyun Guan;Liang Wang
  • 通讯作者:
    Liang Wang
Nanopore single-molecule analysis of biomarkers: Providing possible clues to disease diagnosis
纳米孔生物标志物单分子分析:为疾病诊断提供可能的线索
  • DOI:
    10.1016/j.trac.2023.117060
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    Xiaohan Chen;Shuo Zhou;Yunjiao Wang;Ling Zheng;Sarah Guan;Deqiang Wang;Liang Wang;Xiyun Guan
  • 通讯作者:
    Xiyun Guan
Single-Molecule Study on Interactions between Cyclic Nonribosomal Peptides and Protein Nanopore
环状非核糖体肽与蛋白质纳米孔相互作用的单分子研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuo Zhou;Han Wang;Xiaohan Chen;Yunjiao Wang;Daming Zhou;Liyuan Liang;Liang Wang;Deqiang Wang;Xiyun Guan
  • 通讯作者:
    Xiyun Guan
Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh
使用 LiCl 盐梯度和纳米纤维网减慢 DNA 易位速度
  • DOI:
    10.1007/s00249-019-01350-x
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Yan;Daming Zhou;Biao Shi;Ziyin Zhang;Haibin Tian;Leyong Yu;Yunjiao Wang;Xiyun Guan;Zuobin Wang;Deqiang Wang
  • 通讯作者:
    Deqiang Wang

Xiyun Guan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiyun Guan', 18)}}的其他基金

Investigation of Protein Transport in Functionalized Polymeric Nanopores
功能化聚合物纳米孔中蛋白质运输的研究
  • 批准号:
    2345813
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Investigation of Protein Transport in Functionalized Polymeric Nanopores
功能化聚合物纳米孔中蛋白质运输的研究
  • 批准号:
    2203763
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
超导量子器件中关于量子计算、电路量子电动力学和退相干的研究
  • 批准号:
    11174248
  • 批准年份:
    2011
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
分子高振动-转动激发态结构中的复杂相互作用
  • 批准号:
    11074204
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
以硫氧还蛋白还原酶为靶点的化学生物学研究
  • 批准号:
    21002047
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
激光催化下的旋量凝聚原子:自旋混合与共振拍
  • 批准号:
    10974045
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
基于SSD的大规模元数据处理技术研究
  • 批准号:
    60970025
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
李超代数的表示和仿射李代数的VCS表示及双代数结构
  • 批准号:
    10901028
  • 批准年份:
    2009
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rapid and low-cost PFAS detection with advanced solid-state nanopore chips
利用先进的固态纳米孔芯片进行快速、低成本的 PFAS 检测
  • 批准号:
    10603099
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Characterization of Solid-State Nanopores and Precision Measurement of Individual Proteins Using Logic-Driven Nanopore Devices
使用逻辑驱动纳米孔装置表征固态纳米孔并精确测量单个蛋白质
  • 批准号:
    569399-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multilayer Device for Sequencing DNA Through a Solid-State Nanopore
通过固态纳米孔对 DNA 进行测序的多层装置
  • 批准号:
    10483455
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
  • 批准号:
    10683967
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Solid-state nanopore detection of protein biomarkers for early sepsisdiagnosis
用于脓毒症早期诊断的蛋白质生物标志物的固态纳米孔检测
  • 批准号:
    10841313
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Data Denoising using AI for improving the accuracy of Solid-State Nanopore Sensing
使用 AI 进行数据去噪以提高固态纳米孔传感的准确性
  • 批准号:
    CCARD-2022-00591
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    CCI Applied Research and Development Grants
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
  • 批准号:
    10439291
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
Solid-state nanopores and silicon nanomembranes for ultrasensitive protein biomarker detection
用于超灵敏蛋白质生物标志物检测的固态纳米孔和硅纳米膜
  • 批准号:
    10427339
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Solid-state nanopores and silicon nanomembranes for ultrasensitive protein biomarker detection
用于超灵敏蛋白质生物标志物检测的固态纳米孔和硅纳米膜
  • 批准号:
    10549401
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Super-rapid diagnosis of ocular viral infections by single virus detection with solid-state nanopore
通过固态纳米孔检测单一病毒超快速诊断眼部病毒感染
  • 批准号:
    21K09695
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了