Thermoelectric-Plasmonic Hybrid Infrared Sensor for Uncooled Multispectral Application
适用于非制冷多光谱应用的热电-等离子体混合红外传感器
基本信息
- 批准号:1709307
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractNontechnical: A photodetector is at the heart of modern sensing and imaging technology. A very well-known application of photodetectors is an imaging sensor of a digital camera. Compared with the well-established photo-detection methods of visible light, the sensing of near- and mid-infrared light with high sensitivity at room temperature is still challenging. An advanced infrared light photodetector requires cooling of the device below -100oC. Conversion of infrared light-heat-electric signal is a useful way to detect IR light. However, this approach (called as a thermoelectric effect) has several inherent problems which prevent a miniaturization of the device and limit an ability to resolve infrared light with different wavelengths. Also, existing thermoelectric materials exhibit a low efficiency in converting light energy to electric energy at room temperature. It is difficult to address weaknesses of current technology by improving only a single aspect of devices. In this project, multidisciplinary research will be performed for new materials design, theoretical performance evaluation and novel electric device fabrication. The photodetector from this project will efficiently collect infrared light of different wavelengths at room temperature. The nature of the multidisciplinary research will be beneficial in integrating the technical research with education and outreach. Basic science, technology and prototype product of the project will be used in "Nanotechnology" workshop for the Pittsburgh Junior Academy of Science (PJAS) and "Science Research" course for Pittsburgh local high school students. In addition, The PI and co-PIs will integrate outcomes of the project into undergraduate and graduate courses in materials science, mechanical engineering and electrical engineering programs at the University of Pittsburgh. Technical:The objective of this research is to develop a thermoelectric infrared sensor that has a multispectral resolution capability and operates without cryogenic cooling. This will be accomplished using hybrid structures of 2-dimensional materials, such as graphene and molybdenum sulfide, and plasmonic metal Nano-shells. The hypotheses underlying the proposed structure are as follows. First, unlike conventional bulk thermoelectric materials, graphene and molybdenum Nano sheets have an extremely large surface area to volume ratio. This feature can provide an opportunity to improve the Seebeck coefficient through modifying or doping the surface. Second, high and wavelength-dependent absorption of infrared light can be enabled by the surface plasmons of dielectric core - metal Nano-shell particles with tunable characteristic wavelengths. Third, a thin free-standing silicon nitride membrane with low heat capacity and low thermal conductivity can allow faster and larger increase of local temperature upon IR light absorption. This will improve dynamic response and the signal-to-noise ratio of an IR sensor. The low thermal conductivity of silicon nitride can be further reduced by increasing structural and mass disorder. The major intellectual merit of the proposed research lies in the fundamental understanding of the heat and charge transport properties at nanoscale. Through integrated research of simulation and experiment, the principal investigators will develop a model to predict how physical properties (e.g. Seebeck coefficient, thermal conductivity and heat capacity) of a free standing membrane affect important performance factors of the thermoelectric IR sensor, such as output signal, response time and signal-to-noise ratio. Moreover, enhancement of selective light absorption by the metal Nano-shells and subsequent energy dissipation will show a novel way to resolve the wavelength of incident infrared light and create a temperature gradient through local heating.
摘要非技术性:光电探测器是现代传感和成像技术的核心。光电探测器的众所周知的应用是数码相机的成像传感器。与可见光的照片检测方法相比,在室温下具有高灵敏度的近红外和中红外光仍然具有挑战性。高级红外光电探测器需要冷却-100oC以下的设备。红外光热信号的转换是检测红外光线的有用方法。但是,这种方法(称为热电效应)有几个固有的问题,可以防止设备小型化并限制具有不同波长的红外光的能力。此外,现有的热电材料在室温下将光能转换为电能方面表现出低效率。很难通过仅改善设备的一个方面来解决当前技术的弱点。在这个项目中,将对新材料设计,理论性能评估和新型电动器械制造进行多学科研究。该项目的光电探测器将在室温下有效收集不同波长的红外光。多学科研究的性质将有益于将技术研究与教育和外展整合在一起。该项目的基础科学,技术和原型产品将用于匹兹堡初级科学学院(PJAS)(PJAS)和匹兹堡当地高中生的“科学研究”课程的“纳米技术”研讨会。此外,PI和CO-PIS将将该项目的成果纳入匹兹堡大学材料科学,机械工程和电气工程计划的本科和研究生课程。技术:这项研究的目的是开发具有多光谱分辨率能力的热电红外传感器,并且在没有低温冷却的情况下运行。这将使用二维材料的杂化结构(例如石墨烯和钼钼)和等离子金属纳米壳来完成。所提出的结构的基础假设如下。首先,与传统的体积热电材料不同,石墨烯和钼纳米板具有极大的表面积与体积比。此功能可以通过修改或掺杂表面来提供一个机会来提高Seebeck系数。其次,介电芯 - 金属纳米壳颗粒的表面等离子可以使红外光的高和波长依赖性吸收具有可调的特性波长。第三,具有低热量和低导热率的稀薄独立硅氮化膜可以使IR光吸收后的局部温度更快,更大。这将改善IR传感器的动态响应和信噪比。通过增加结构和质量障碍,可以进一步降低氮化硅的导热率低。拟议的研究的主要知识价值在于对纳米级的热和充电运输特性的基本理解。通过对模拟和实验的综合研究,主要研究人员将开发一个模型,以预测自由常规膜的物理特性(例如Seebeck系数,导热性和热容量)如何影响热电IR传感器的重要性能因素,例如输出信号,响应时间和信号 - 噪声比率。此外,金属纳米壳和随后的能量耗散增强了选择性光吸收,将显示出一种新的方法来解决入射红外光的波长,并通过局部加热产生温度梯度。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass
- DOI:10.1016/j.jpowsour.2018.04.026
- 发表时间:2018-06
- 期刊:
- 影响因子:9.2
- 作者:H. Roh;G. Han;Seongha Lee;Sanghyun Kim;S. Choi;C. Yoon;Jung‐Kun Lee
- 通讯作者:H. Roh;G. Han;Seongha Lee;Sanghyun Kim;S. Choi;C. Yoon;Jung‐Kun Lee
Role of the Interface between Ag and ZnO in the Electric Conductivity of Ag Nanoparticle-Embedded ZnO
- DOI:10.1021/acsami.9b17922
- 发表时间:2020-01-29
- 期刊:
- 影响因子:9.5
- 作者:Huang, Po-Shun;Qin, Fen;Lee, Jung-Kun
- 通讯作者:Lee, Jung-Kun
Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells
- DOI:10.1007/s12274-019-2556-8
- 发表时间:2019-11
- 期刊:
- 影响因子:9.9
- 作者:Seongha Lee;H. Roh;G. Han;Jung‐Kun Lee
- 通讯作者:Seongha Lee;H. Roh;G. Han;Jung‐Kun Lee
Effects of medium range order on propagon thermal conductivity in amorphous silicon
- DOI:10.1063/1.5124821
- 发表时间:2020-01-31
- 期刊:
- 影响因子:3.2
- 作者:Hashemi, Amirreza;Babaei, Hasan;Lee, Sangyeop
- 通讯作者:Lee, Sangyeop
Thermal Resistance by Transition Between Collective and Non-Collective Phonon Flows in Graphitic Materials
- DOI:10.1080/15567265.2019.1575497
- 发表时间:2018-12
- 期刊:
- 影响因子:4.1
- 作者:Sangyeop Lee;Xun Li;Ruiqiang Guo
- 通讯作者:Sangyeop Lee;Xun Li;Ruiqiang Guo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jung-Kun Lee其他文献
Heterostructured zero valent iron–montmorillonite nanohybrid and their catalytic efficacy
- DOI:
10.1016/j.clay.2012.04.003 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
You-Hwan Son;Jung-Kun Lee;Yee Soong;Donald Martello;Minking K. Chyu - 通讯作者:
Minking K. Chyu
Low-temperature sintering of SiC ceramics using a mixture of preceramic precursor and metal nanoparticles
- DOI:
10.1016/j.jeurceramsoc.2024.116775 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Anqi Wang;Ian Nettleship;Jung-Kun Lee - 通讯作者:
Jung-Kun Lee
Effect of margin widths on the residual stress in a multi-layer ceramic capacitor
- DOI:
10.1016/j.mee.2006.06.008 - 发表时间:
2006-11-01 - 期刊:
- 影响因子:
- 作者:
Jong-Sung Park;Hyunho Shin;Kug Sun Hong;Hyun Suk Jung;Jung-Kun Lee;Kyong-Yop Rhee - 通讯作者:
Kyong-Yop Rhee
Jung-Kun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jung-Kun Lee', 18)}}的其他基金
EAGER: New interconnect for the perovskite-silicon tandem solar cell: optically transparent and electrically conductive multilayer film
EAGER:钙钛矿-硅串联太阳能电池的新型互连件:光学透明且导电的多层薄膜
- 批准号:
2314036 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Enhanced Photon-Electron Conversion in Thin Film Solar Cells by Propagating Surface Plasmons
通过传播表面等离子体激元增强薄膜太阳能电池中的光子-电子转换
- 批准号:
1408025 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Seedless Growth of Nanowires and Selective Positioning of Quantum Dots for Flexible and Panchromatic Photoelectrochemical Cells
柔性全色光电化学电池中纳米线的无籽生长和量子点的选择性定位
- 批准号:
1333182 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Solid State Dye Sensitized Solar Cells Using Tunable Surface Plasmons of Core-Shell Particles
使用核壳粒子可调表面等离子体的固态染料敏化太阳能电池
- 批准号:
1235979 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Electron Injection in Nanostructured Materials: New Paradigm of Transparent Conducting Oxides
职业:纳米结构材料中的电子注入:透明导电氧化物的新范例
- 批准号:
0847319 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
常压空气暖等离子体耦合催化剂固氮研究
- 批准号:52377155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
船机排温条件下等离子体与催化剂协同的氨分解制氢机制研究
- 批准号:52301382
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分子印迹磁性有序多孔光子晶体微球等离子体3DSERS仿生芯片高通量检测谷物中的多元真菌毒素研究
- 批准号:32372418
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
等离子体刻蚀条件下光刻机用钇基复合陶瓷涂层的失效机制
- 批准号:52371055
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Maximizing the Harvesting of Photogenerated Electron-Hole Pairs in Hybrid Plasmonic Nanosystems
最大化混合等离子体纳米系统中光生电子空穴对的收获
- 批准号:
2304910 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
DYnamic control in hybrid plasmonic NAnopores: road to next generation multiplexed single MOlecule detection
混合等离子体纳米孔的动态控制:下一代多重单分子检测之路
- 批准号:
EP/X038009/1 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Achieving a tunable hybrid plasmonic-semiconductor laser incorporating epsilon-near-zero materials
实现结合ε近零材料的可调谐混合等离子体半导体激光器
- 批准号:
569945-2022 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
- 批准号:
2102239 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Standard Grant