Integration of geometric modeling and numerical analysis based on Constructive Solid Geometry, Boundary Representation, and the Finite Cell Method Part 2: Extension to flawed geometry and volumetric spline-based models
基于构造实体几何、边界表示和有限元方法的几何建模和数值分析的集成第 2 部分:扩展到有缺陷的几何和基于体积样条的模型
基本信息
- 批准号:232449854
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A better integration of (geometric) modelling and numerical analysishas strongly come into the focus of research in ComputationalMechanics during the last ten years. The need for reducing the effortof transferring geometric designs to analysis-suitable objects is one ofthe reasons for the huge success of Isogeometric Analysis (IGA). Ourproposal addresses the general question from a somewhat differentperspective than IGA does. Whereas most results for IsogeometricAnalysis are available for thin-walled structures or those, which canreadily be mapped from two-dimensional geometry we concentrate onsolid, typically bulky models including those obtained by proceduralCAD-geometry or the newly suggested V-models. As structuralanalysis tool we integrate the Finite Cell Method (FCM), a high orderfictitious domain approach into the CAD-to-analysis chain. Within thescope of the first project phase, it could be shown, that ConstructiveSolid Geometry (CSG) and the Finite Cell Method fit perfectlytogether. The inside-outside test being crucial for FCM could berealized by Boolean operations, and the inherent water-tightness ofCSG models rendered geometry healing unnecessary. Many presentCAD systems, however, apply not only CSG but model solids viadescribing their surfaces. Often even a mixture of both basic modelingparadigms is applied in practice, implying in many cases flawed finiteelement meshes and the necessity for mesh healing. Following thegeneral goal of this project, namely to tightly integrate solid modelingand numerical analysis, the first central objective of the secondproject phase is to avoid geometry and mesh healing by couplingFCM to B-Rep. We will extend the mathematical concept of BoundaryRepresentation models to a class of more general models including alarge part of what is called flawed or dirty geometry in daily CADpractice.For these models, we will develop methods for a generalizedpoint membership test. These tests will then be the basis for a FiniteCell computation and drastically simplify the transition from CAD toanalysis. The second major goal will be an extension of the CADanalysisintegration to solid models which include information on theinterior of a structure itself. A prominent recent example of thisgeneralized type of solids are V-models, where attributes of theinterior of a body are described by fields of NURBS. Whereas wealready have vast experience with solid models discretized bypiecewise constant fields defined on voxels (e.g. CT scans),questions related to the smoothness of attribute functions, toconditions for a consistency of NURBS spaces for these attributesand the approximation spaces of the finite cells, to convergenceproperties for coupled V-model/FCM schemes and to an efficientimplementation shall be investigated.
近十年来,几何建模与数值分析的结合已成为计算力学研究的热点。等几何分析(伊加)之所以取得巨大成功,主要原因之一是需要减少将几何设计转换为适合分析的对象的工作量。我们的建议从一个与伊加稍有不同的角度来解决这个一般性问题。虽然IsogeometricAnalysis的大多数结果可用于薄壁结构或那些可以容易地从二维几何形状映射的结构,但我们专注于实体,通常是庞大的模型,包括通过过程CAD几何形状或新建议的V模型获得的模型。作为结构分析工具,我们将有限单元法(FCM),一种高阶虚拟域方法集成到CAD到分析链中。在第一个项目阶段的范围内,可以证明,构造实体几何(CSG)和有限单元法完美地结合在一起。对于FCM来说,内外检验是关键,可以通过布尔运算来实现,CSG模型固有的水密性使得几何愈合变得不必要。然而,许多现有的CAD系统不仅应用CSG,而且通过描述其表面来建模实体。在实践中,甚至常常是两种基本建模范式的混合,这意味着在许多情况下有缺陷的有限元网格和网格愈合的必要性。遵循这个项目的总体目标,即紧密结合实体建模和数值分析,第二个项目阶段的第一个中心目标是通过将FCM耦合到B-Rep来避免几何和网格愈合。我们将边界表示模型的数学概念扩展到一类更一般的模型,包括日常CAD实践中称为有缺陷或脏几何的大部分。对于这些模型,we will develop发展methods方法for a generalizedpoint广义point点membership成员test测试.这些测试将成为计算单元计算的基础,并大大简化从CAD到分析的过渡。第二个主要目标是将CAD分析集成扩展到实体模型,其中包括结构本身内部的信息。最近一个突出的例子,这种广义类型的固体是V模型,其中属性的内部的一个机构描述的领域的NURBS。虽然我们已经有了大量的经验与实体模型离散bypecewise常数场定义的体素(如CT扫描),问题有关的光滑性的属性功能,到条件的一致性NURBS空间为这些属性和近似空间的有限细胞,收敛性能耦合V-模型/FCM计划和一个有效的实现将进行调查。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From geometric design to numerical analysis: A direct approach using the Finite Cell Method on Constructive Solid Geometry
- DOI:10.1016/j.camwa.2017.01.027
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:B. Wassermann;S. Kollmannsberger;Tino Bog;E. Rank
- 通讯作者:B. Wassermann;S. Kollmannsberger;Tino Bog;E. Rank
Smart octrees: Accurately integrating discontinuous functions in 3D
- DOI:10.1016/j.cma.2016.04.006
- 发表时间:2016-07
- 期刊:
- 影响因子:7.2
- 作者:L. Kudela;N. Zander;S. Kollmannsberger;E. Rank
- 通讯作者:L. Kudela;N. Zander;S. Kollmannsberger;E. Rank
Integrating CAD and Numerical Analysis: 'Dirty Geometry' handling using the Finite Cell Method
- DOI:10.1016/j.cma.2019.04.017
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:B. Wassermann;S. Kollmannsberger;Shuohui Yin;L. Kudela;E. Rank
- 通讯作者:B. Wassermann;S. Kollmannsberger;Shuohui Yin;L. Kudela;E. Rank
Multi-level hp-adaptivity and explicit error estimation
多级 HP 自适应和显式误差估计
- DOI:10.1186/s40323-016-0085-5
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:D. D’Angella;N. Zander;S. Kollmannsberger;F. Frischmann;E. Rank;A. Schroder;A. Reali
- 通讯作者:A. Reali
The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes
三维问题的多级 hp 方法:任意悬挂节点动态变化的高阶网格细化
- DOI:10.1016/j.cma.2016.07.007
- 发表时间:2016
- 期刊:
- 影响因子:7.2
- 作者:N. Zander;T. Bog;M. Elhaddad;F. Frischmann;S. Kollmannsberger;E. Rank
- 通讯作者:E. Rank
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ernst Rank其他文献
Professor Dr. Ernst Rank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ernst Rank', 18)}}的其他基金
BIM-coupled vibroacoustic simulations
BIM 耦合振动声学模拟
- 批准号:
221059122 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Definition und Umsetzung einer Anfragesprache mit räumlich-topologischen Operatoren für die Analyse und Partitionierung von Bauwerksmodellen
用于建筑模型分析和分区的具有空间拓扑运算符的查询语言的定义和实现
- 批准号:
26702564 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Volumenorientierte Modellierung als Grundlage einer vernetzt-kooperativen Planung im konstruktiven Ingenieurbau
面向体积的建模作为结构工程中网络化、协作式规划的基础
- 批准号:
30144496 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
Analyse von räumlichen Kontaktproblemen mit Finiten Elementen hoher Ordnung
高阶有限元空间接触问题分析
- 批准号:
16584683 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
High order finite elements for structural simulation in fluid-structure interaction
用于流固耦合结构模拟的高阶有限元
- 批准号:
5391978 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Units
Volumenorientierte Modellierung als Grundlage einer vernetzt-kooperativen Planung im konstruktiven Ingenieurbau
面向体积的建模作为结构工程中网络化、协作式规划的基础
- 批准号:
5249100 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
The p-version of the finite element method fpr physically nonlinear problems
用于物理非线性问题的有限元方法的 p 版本
- 批准号:
5152872 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Experimente zur Bestimmung effektiver Materialeigenschaften und röntgentomographische Untersuchungen der subskaligen Struktur
确定有效材料特性的实验和亚尺度结构的 X 射线断层扫描研究
- 批准号:
5163786 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
- 批准号:
10637960 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Reliable post hoc interpretations of deep learning in genomics
基因组学深度学习的可靠事后解释
- 批准号:
10638753 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Models for accumulation of evidence through sequences in a navigation-based, decision-making task
在基于导航的决策任务中通过序列积累证据的模型
- 批准号:
10608293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Renewed bone remodeling after pausing long-term bisphosphonate use: Does it replace regions of impaired bone quality and restore mechanical integrity?
暂停长期使用双膦酸盐后重新进行骨重塑:它是否可以替代骨质量受损的区域并恢复机械完整性?
- 批准号:
10656954 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Statistical models for the integrative analysis of complex biomedical images with manifold structure
具有流形结构的复杂生物医学图像综合分析的统计模型
- 批准号:
10590469 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automated Geometric Modeling and Analysis
自动几何建模和分析
- 批准号:
RGPIN-2021-03707 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Investigation of the quantitative intracranial aneurysm wall enhancement and geometric features associated with aneurysm volume growth
颅内动脉瘤壁定量增强和与动脉瘤体积生长相关的几何特征的研究
- 批准号:
10415665 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
- 批准号:
10663798 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Spectroscopic and Mechanistic Characterization of Novel DNAzymes Selective for Redox-active Metal Ions
选择性氧化还原活性金属离子的新型 DNAzyme 的光谱和机理表征
- 批准号:
10538382 - 财政年份:2022
- 资助金额:
-- - 项目类别: