FET: Medium: Memory Processing Unit (MPU) - An Efficient, Reconfigurable In-memory Computing Fabric

FET:介质:内存处理单元 (MPU) - 高效、可重新配置的内存计算结构

基本信息

  • 批准号:
    1900675
  • 负责人:
  • 金额:
    $ 95.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) is expected to become a disruptive force for both emerging and mature industry sectors. However, current AI progress is mostly driven by software and algorithm advances, while physical AI implementation is limited by hardware systems that were primarily developed to perform conventional computing tasks. Large scale implementation of AI in smart homes, robotics and autonomous vehicles will only become possible with hardware innovations, through new computing architectures and devices that can overcome the limits of today's systems in terms of power efficiency and speed. This project aims at precisely addressing these problems through the development of a new in-memory computing architecture that is naturally suited for AI applications. Undergraduate and graduate students will be trained to become experts at the interface of nanoelectronic devices and computing architecture, and be able to join the workforce of computer engineering and semiconductor research and development. The knowledge developed in this project will also be widely disseminated to the general public through publications, tutorials, course modules, high-school visits and industry partnerships. The proposed project will lead to a new computing architecture that is fundamentally efficient, parallel, modular and reconfigurable. Unlike specialized accelerators designed for specific algorithms, the project aims at developing a general memory-centric hardware platform that can be used for a broad range of computing tasks. The program will be carried out through multidisciplinary research efforts organized around five central thrusts that cover small scale prototype and circuit verification, uniform module development, scalable chip design, algorithm mapping, and system benchmarking and optimization. Key performance parameters will be measured and optimized, while new devices, circuit components, design tools and simulation packages will be developed and shared with the research community and the general public to help broaden the impact of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)有望成为新兴和成熟行业的颠覆性力量。然而,目前的人工智能进展主要是由软件和算法的进步驱动的,而物理人工智能的实现受到硬件系统的限制,这些硬件系统主要是为了执行传统的计算任务而开发的。只有通过硬件创新,通过新的计算架构和设备,才能在智能家居、机器人和自动驾驶汽车中大规模实施人工智能,这些架构和设备可以克服当今系统在能效和速度方面的限制。该项目旨在通过开发一种新的内存计算架构来精确解决这些问题,该架构自然适合AI应用程序。本科生和研究生将接受培训,成为纳米电子器件和计算架构接口的专家,并能够加入计算机工程和半导体研究与开发的劳动力队伍。该项目中开发的知识还将通过出版物、教程、课程模块、高中访问和行业伙伴关系向公众广泛传播。拟议的项目将导致一个新的计算架构,从根本上是高效的,并行的,模块化的和可重构的。与专为特定算法设计的专用加速器不同,该项目旨在开发一个以内存为中心的通用硬件平台,可用于广泛的计算任务。该计划将通过多学科研究工作进行,围绕五个中心重点进行,包括小规模原型和电路验证,统一模块开发,可扩展芯片设计,算法映射以及系统基准测试和优化。主要的性能参数将被测量和优化,同时新的器件、电路元件、设计工具和仿真软件包将被开发并与研究界和公众分享,以帮助扩大该项目的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Device Non-Ideality Effects and Architecture-Aware Training in RRAM In-Memory Computing Modules
RRAM 内存计算模块中的设备非理想效应和架构感知训练
Deep Neural Network Mapping and Performance Analysis on Tiled RRAM Architecture
Tiled RRAM 架构的深度神经网络映射和性能分析
Device Variation Effects on Neural Network Inference Accuracy in Analog In‐Memory Computing Systems
设备变化对模拟内存计算系统中神经网络推理精度的影响
  • DOI:
    10.1002/aisy.202100199
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wang, Qiwen;Park, Yongmo;Lu, Wei D.
  • 通讯作者:
    Lu, Wei D.
RRAM-enabled AI Accelerator Architecture
支持 RRAM 的 AI 加速器架构
Exploring Compute-in-Memory Architecture Granularity for Structured Pruning of Neural Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Lu其他文献

A novel 3D-printed multi-driven system for large-scale neurophysiological recordings in multiple brain regions
一种新颖的 3D 打印多驱动系统,用于多个大脑区域的大规模神经生理学记录
  • DOI:
    10.1016/j.jneumeth.2021.109286
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Tao Sheng;Danqin Xing;Yi Wu;Qiao Wang;Xiangyao Li;Wei Lu
  • 通讯作者:
    Wei Lu
Orthogonal manipulations of phase and phase dispersion in realization of azimuthal angle-resolved focusings
实现方位角分辨聚焦时相位和相位色散的正交操作
  • DOI:
    10.1364/oe.446962
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Feilong Yu;Zengyue Zhao;Jin Chen;Jiuxu Wang;Rong Jin;Jian Chen;Jian Wang;Guanhai Li;Xiaoshuang Chen;Wei Lu
  • 通讯作者:
    Wei Lu
General construction of revocable identity-based fully homomorphic signature
基于身份的可撤销全同态签名的一般构造
  • DOI:
    10.1007/s11432-018-9706-0
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Congge Xie;Jian Weng;Wei Lu;Lin Hou
  • 通讯作者:
    Lin Hou
Wind Turbine Pitch System Condition Monitoring and Fault Detection Based on Optimized Relevance Vector Machine Regression
基于优化相关向量机回归的风电机组变桨系统状态监测与故障检测
  • DOI:
    10.1109/tste.2019.2954834
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Wei Lu;Qian Zheng;Zareipour Hamidreza
  • 通讯作者:
    Zareipour Hamidreza
Synergistically Controlled Mechanism of Sodium Birnessite with a Larger Interlayer Distance for Fast Ion Intercalation toward Sodium-Ion Batteries
较大层距钠水钠锰矿快速离子嵌入钠离子电池的协同控制机制
  • DOI:
    10.1021/acs.jpcc.0c10237
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fanghui Zhao;Shuyi Zeng;Lianfeng Duan;Xueyu Zhang;Xuesong Li;Liying Wang;Xijia Yang;Wei Lu
  • 通讯作者:
    Wei Lu

Wei Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Lu', 18)}}的其他基金

PFI-TT: Development of Lithium Metal Battery with Enhanced Reliability
PFI-TT:开发可靠性增强的锂金属电池
  • 批准号:
    2140984
  • 财政年份:
    2022
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
I-Corps: Dendrite-Suppressing Separator for Next Generation Lithium-ion Batteries
I-Corps:用于下一代锂离子电池的枝晶抑制分离器
  • 批准号:
    2030680
  • 财政年份:
    2020
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated memristor neural networks for in-situ analysis of intracellular neuronal recordings
合作研究:用于细胞内神经元记录原位分析的集成忆阻器神经网络
  • 批准号:
    1915550
  • 财政年份:
    2019
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Design and growth of high entropy oxides with tailored ionic dynamics for memory and computing applications
为内存和计算应用设计和生长具有定制离子动力学的高熵氧化物
  • 批准号:
    1810119
  • 财政年份:
    2018
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Atomic control of ionic processes in resistive memory devices
电阻存储器件中离子过程的原子控制
  • 批准号:
    1708700
  • 财政年份:
    2017
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
SHF: Small: Efficient In-Memory Computing Architecture Based on RRAM Crossbar Arrays
SHF:小型:基于 RRAM Crossbar 阵列的高效内存计算架构
  • 批准号:
    1617315
  • 财政年份:
    2016
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
I-Corps: Creating High Performance Electrodes for Li-ion Batteries
I-Corps:为锂离子电池制造高性能电极
  • 批准号:
    1358550
  • 财政年份:
    2013
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
High-Performance Vertical Nanowire Heterojunction Transistors
高性能垂直纳米线异质结晶体管
  • 批准号:
    1202126
  • 财政年份:
    2012
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
CAREER: Understanding, Development and Applications of Nanoscale Memristor Devices
职业:纳米级忆阻器器件的理解、开发和应用
  • 批准号:
    0954621
  • 财政年份:
    2010
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Nanowire-Based High-Frequency, High-Q Electromechanical Resonators
基于纳米线的高频、高 Q 机电谐振器
  • 批准号:
    0804863
  • 财政年份:
    2008
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2312366
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312741
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2403723
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
  • 批准号:
    2312507
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
  • 批准号:
    2312508
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312739
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312397
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312396
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312740
  • 财政年份:
    2023
  • 资助金额:
    $ 95.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了