Collaborative Research: Integrated memristor neural networks for in-situ analysis of intracellular neuronal recordings
合作研究:用于细胞内神经元记录原位分析的集成忆阻器神经网络
基本信息
- 批准号:1915550
- 负责人:
- 金额:$ 24.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to detect and analyze individual neuron spiking patterns over large areas will have profound impacts on neuroscience and medicine, as it allows the functions of the brain to be directly mapped to underlying neuron activities and enables precise brain disease detection and drug developments. However, although recent advances in neuroprobes such as nanoelectrode arrays make it possible to pick up signals from single neurons, scaling the systems to thousands and possibly millions of neuron sites is not practical due the enormous resources and time required to digitize, store and analyze the vast amount of data. This proposal aims to precisely address these challenges by integrating an artificial neural network on the nanoelectrode array, such that cell signals picked up by the electrodes are directly processed by the artificial neural network, and only the processed, "useful" data need to be amplified and transmitted, allowing real-time analysis with very low power. Undergraduate and graduate students will be trained to obtain state-of-the-art nanotechnology and neuroengineering techniques. Knowledge and techniques developed during research will be incorporated into course materials and other types of publications to allow cross pollination for students among different disciplines and broad dissemination to the general public. The proposed new neural recording system will offer unparalleled spatial resolution and processing capabilities, where high density and highly sensitive nanoelectrode arrays are integrated with a memristor-based artificial neural network that allows real time signal processing. By optimizing and utilizing internal dynamic ionic processes in the memristors, the artificial network can be directly driven by the spike trains from biological neurons without amplification or other pre-processing, where responses from the memristor network can be used to analyze temporal patterns in the neuron spikes and to connect detected neuronal activity with functions of the biological networks. The tightly coupled memristor network with the biological network can further allow functions in the biological system to be directly mapped on the electrical system, and potentially lead to future neural prosthesis and augmentation applications. New materials, devices, and networks will be developed, along with new recording and computing strategies that broaden the impact of the proposed project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
检测和分析大面积单个神经元放电模式的能力将对神经科学和医学产生深远影响,因为它允许大脑功能直接映射到潜在的神经元活动,并使精确的脑部疾病检测和药物开发成为可能。然而,尽管纳米电极阵列等神经探针的最新进展使从单个神经元获取信号成为可能,但将系统扩展到数千个甚至可能数百万个神经元站点是不切实际的,因为数字化、存储和分析大量数据需要巨大的资源和时间。这一提议旨在通过在纳米电极阵列上集成人工神经网络来精确地应对这些挑战,使电极拾取的细胞信号直接由人工神经网络处理,只需放大和传输处理后的“有用”数据,从而能够以非常低的功率进行实时分析。本科生和研究生将接受培训,以获得最先进的纳米技术和神经工程技术。在研究过程中开发的知识和技术将被纳入课程材料和其他类型的出版物,使不同学科的学生能够相互授粉,并向公众广泛传播。拟议的新神经记录系统将提供无与伦比的空间分辨率和处理能力,其中高密度和高灵敏度的纳米电极阵列与基于忆阻器的人工神经网络集成在一起,允许实时信号处理。通过优化和利用忆阻器中的内部动态离子过程,人工网络可以直接由生物神经元的棘波序列驱动,而不需要放大或其他预处理,其中来自忆阻器网络的响应可以用来分析神经元棘波的时间模式,并将检测到的神经元活动与生物网络的功能联系起来。与生物网络紧密耦合的忆阻器网络可以进一步允许生物系统中的功能直接映射到电子系统上,并可能导致未来的神经假体和增强应用。将开发新的材料、设备和网络,以及扩大拟议项目影响的新记录和计算策略。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Memristor networks for real-time neural activity analysis
- DOI:10.1038/s41467-020-16261-1
- 发表时间:2020-05
- 期刊:
- 影响因子:16.6
- 作者:Xiaojian Zhu;Qiwen Wang;Wei D. Lu
- 通讯作者:Xiaojian Zhu;Qiwen Wang;Wei D. Lu
Spatiotemporal Spike Pattern Detection with Second-order Memristive Synapses
使用二阶忆阻突触进行时空尖峰模式检测
- DOI:10.1109/iscas48785.2022.9937414
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wu, Yuting;Yoo, Sangmin;Meng, Fan-Hsuan;Lu, Wei D.
- 通讯作者:Lu, Wei D.
Hierarchical architectures in reservoir computing systems
- DOI:10.1088/2634-4386/ac1b75
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:John Moon;Yuting Wu;Wei D. Lu
- 通讯作者:John Moon;Yuting Wu;Wei D. Lu
Neural Functional Connectivity Reconstruction with Second‐Order Memristor Network
- DOI:10.1002/aisy.202000276
- 发表时间:2021-05
- 期刊:
- 影响因子:7.4
- 作者:Yuting Wu;John Moon;Xiaojian Zhu;W. Lu
- 通讯作者:Yuting Wu;John Moon;Xiaojian Zhu;W. Lu
Neural connectivity inference with spike-timing dependent plasticity network
使用尖峰时序相关可塑性网络进行神经连接推理
- DOI:10.1007/s11432-021-3217-0
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Moon, John;Wu, Yuting;Zhu, Xiaojian;Lu, Wei D.
- 通讯作者:Lu, Wei D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Lu其他文献
A field investigation into the characteristics and formation mechanisms of particles during the operation of laser printers and photocopiers.
现场调查激光打印机和复印机运行过程中颗粒的特征和形成机制。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qiang Wang;Daizhi An;Zhengquan Yuan;Rubao Sun;Wei Lu;Lili Wang - 通讯作者:
Lili Wang
Granular Fuzzy Modeling for Multidimensional Numeric Data: A Layered Approach Based on Hyperbox
多维数值数据的粒度模糊建模:基于 Hyperbox 的分层方法
- DOI:
10.1109/tfuzz.2018.2870050 - 发表时间:
2019-04 - 期刊:
- 影响因子:11.9
- 作者:
Wei Lu;Dan Shan;Witold Pedrycz;Liyong Zhang;Jianhua Yang;Xiaodong Liu - 通讯作者:
Xiaodong Liu
A candidate material EuSn2As2-based terahertz direct detection and imaging
基于EuSn2As2的候选材料太赫兹直接探测与成像
- DOI:
10.1038/s41699-022-00301-z - 发表时间:
2022-04 - 期刊:
- 影响因子:9.7
- 作者:
Changlong Liu;Yi Liu;Zhiqingzi Chen;Shi Zhang;Chaofan Shi;Guanhai Li;Xiao Yu;Zhiwei Xu;Libo Zhang;Wenchao Zhao;Xiaoshuang Chen;Wei Lu;Lin Wang - 通讯作者:
Lin Wang
Learning-Induced Suboptimal Compensation for PKCι/λ Function in Mutant Mice
突变小鼠中学习诱导的 PKCδ/δ 功能的次优补偿
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Tao Sheng;Shaoli Wang;D;an Qian;Jun Gao;Shigeo Ohno;Wei Lu - 通讯作者:
Wei Lu
Bilateral Areolar Approach Endoscopic Thyroidectomy for Low-risk Papillary Thyroid Carcinoma: A Review of 137 Cases in a Single Institute
双侧乳晕入路内镜甲状腺切除术治疗低危甲状腺乳头状癌:单一机构 137 例病例回顾
- DOI:
10.1097/sle.0b013e3182a50f1f - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Weili Gao;Liwei Liu;Guochao Ye;Wei Lu;L. Teng - 通讯作者:
L. Teng
Wei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Lu', 18)}}的其他基金
PFI-TT: Development of Lithium Metal Battery with Enhanced Reliability
PFI-TT:开发可靠性增强的锂金属电池
- 批准号:
2140984 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
I-Corps: Dendrite-Suppressing Separator for Next Generation Lithium-ion Batteries
I-Corps:用于下一代锂离子电池的枝晶抑制分离器
- 批准号:
2030680 - 财政年份:2020
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
FET: Medium: Memory Processing Unit (MPU) - An Efficient, Reconfigurable In-memory Computing Fabric
FET:介质:内存处理单元 (MPU) - 高效、可重新配置的内存计算结构
- 批准号:
1900675 - 财政年份:2019
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
Design and growth of high entropy oxides with tailored ionic dynamics for memory and computing applications
为内存和计算应用设计和生长具有定制离子动力学的高熵氧化物
- 批准号:
1810119 - 财政年份:2018
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Atomic control of ionic processes in resistive memory devices
电阻存储器件中离子过程的原子控制
- 批准号:
1708700 - 财政年份:2017
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
SHF: Small: Efficient In-Memory Computing Architecture Based on RRAM Crossbar Arrays
SHF:小型:基于 RRAM Crossbar 阵列的高效内存计算架构
- 批准号:
1617315 - 财政年份:2016
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
I-Corps: Creating High Performance Electrodes for Li-ion Batteries
I-Corps:为锂离子电池制造高性能电极
- 批准号:
1358550 - 财政年份:2013
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
High-Performance Vertical Nanowire Heterojunction Transistors
高性能垂直纳米线异质结晶体管
- 批准号:
1202126 - 财政年份:2012
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
CAREER: Understanding, Development and Applications of Nanoscale Memristor Devices
职业:纳米级忆阻器器件的理解、开发和应用
- 批准号:
0954621 - 财政年份:2010
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Nanowire-Based High-Frequency, High-Q Electromechanical Resonators
基于纳米线的高频、高 Q 机电谐振器
- 批准号:
0804863 - 财政年份:2008
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant