Atomic control of ionic processes in resistive memory devices
电阻存储器件中离子过程的原子控制
基本信息
- 批准号:1708700
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large amounts of data are being generated constantly in every aspect of today's society, from manufacturing to social networks, from large organizations to individual consumers, and this trend is continuing at an accelerated pace. Better and faster memory technologies are needed to store and analyze the data quickly and efficiently. At the same time, traditional memory technologies are facing fundamental scaling limits and major practical constraints that make it ever more challenging to keep up with the demand. This project aims to develop a fundamentally new memory technology that can store data by changing the material's internal configuration at the atomic scale, leading to significantly improved device performance. The proposed program will significantly advance fundamental scientific research and enhance the understanding of interface control, ionic and electronic transport and hybrid device integration at the nanoscale. Results obtained from this NSF-funded program will also likely lead to successful technology transfers that can result in industry-leading memory products, and have a transformative impact on the crucial semiconductor industry sector. The tools, methods and techniques developed in the program can be applied to a wide range of nanoscale devices and systems to stimulate research in a broad range of areas. The project will in turn provide interdisciplinary training of graduate and undergraduate students, and draw broad participation of students of different levels and backgrounds in collaborative research and education.The proposed device is based on the concept of resistive random-access memory (RRAM), which has shown excellent scalability and several other performance metrics. However, the technology still faces fundamental challenges, including large device variations, high programming current and small on/off ratio, which prevent the device from practical applications. The proposed project aims to achieve atomic-level control of the fundamental ionic processes underlying the resistance changes in RRAM, and produce devices with significant performance improvements and new device functions. Specifically, the proposed device exploits atomically-thin graphene as an ion-blocking layer to regulate oxygen vacancy (VO) generation and migration through nanoscale openings in the graphene film. The filament formation will further be confined inside the switching layer to localized channels that are favorable for VO transport and storage through controlled doping. The experimental studies will be supported by theoretical calculations and modeling, including first-principles calculations that predict the VO formation energy and O-O distance, as well as numerical modeling that predicts the VO distribution and dynamic migration processes. The proposed approaches will eliminate excessive VOs in the switching layer and will significantly improve the on/off ratio, programming current, and device variability of RRAM devices. In the meantime, by leveraging unique properties of emerging materials with emerging devices, the proposed project advances the frontier of nanoscale device research and naturally promotes a tight integration with physics, materials research and device engineering.
从制造业到社交网络,从大型组织到个人消费者,当今社会的方方面面都在不断产生大量数据,而且这一趋势正在加速延续。需要更好、更快的存储技术来快速高效地存储和分析数据。与此同时,传统的存储技术面临着基本的扩展限制和重大的实际限制,这使得跟上需求的挑战越来越大。该项目旨在开发一种全新的存储技术,通过在原子尺度上改变材料的内部结构来存储数据,从而显著提高设备性能。拟议的计划将显著推进基础科学研究,并加强对界面控制、离子和电子传输以及纳米级混合器件集成的理解。从NSF资助的这项计划中获得的结果也可能导致成功的技术转让,从而产生行业领先的存储产品,并对关键的半导体行业产生变革性的影响。该计划中开发的工具、方法和技术可应用于广泛的纳米设备和系统,以促进广泛领域的研究。该项目将为研究生和本科生提供跨学科培训,并吸引不同层次和背景的学生广泛参与合作研究和教育。建议的设备基于阻性随机存取存储器(RRAM)的概念,已显示出良好的可扩展性和其他几个性能指标。然而,该技术仍然面临着根本性的挑战,包括器件变化大、编程电流大、开关比小,这阻碍了该器件的实际应用。拟议的项目旨在实现对RRAM中电阻变化背后的基本离子过程的原子级控制,并生产具有显著性能改进和新器件功能的器件。具体地说,该器件利用原子薄的石墨烯作为离子阻挡层,通过石墨烯薄膜中纳米级的开口来调节氧空位(VO)的产生和迁移。通过控制掺杂,灯丝的形成将进一步限制在开关层内,以有利于VO的传输和存储的局域沟道。实验研究将得到理论计算和模拟的支持,包括预测VO形成能和O-O距离的第一性原理计算,以及预测VO分布和动态迁移过程的数值模拟。所提出的方法将消除开关层中过多的VO,并将显著改善RRAM器件的通断比、编程电流和器件变化性。同时,通过利用新兴材料和新兴设备的独特特性,拟议的项目推进了纳米设备研究的前沿,并自然促进了与物理、材料研究和设备工程的紧密结合。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Memristor networks for real-time neural activity analysis
- DOI:10.1038/s41467-020-16261-1
- 发表时间:2020-05
- 期刊:
- 影响因子:16.6
- 作者:Xiaojian Zhu;Qiwen Wang;Wei D. Lu
- 通讯作者:Xiaojian Zhu;Qiwen Wang;Wei D. Lu
Nanoionic Resistive‐Switching Devices
- DOI:10.1002/aelm.201900184
- 发表时间:2019-05
- 期刊:
- 影响因子:6.2
- 作者:Xiaojian Zhu;Seung Hwan Lee;W. Lu
- 通讯作者:Xiaojian Zhu;Seung Hwan Lee;W. Lu
Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing
- DOI:10.1038/s41563-018-0248-5
- 发表时间:2019-02-01
- 期刊:
- 影响因子:41.2
- 作者:Zhu, Xiaojian;Li, Da;Lu, Wei D.
- 通讯作者:Lu, Wei D.
Optogenetics-Inspired Tunable Synaptic Functions in Memristors
- DOI:10.1021/acsnano.7b07317
- 发表时间:2018-02-01
- 期刊:
- 影响因子:17.1
- 作者:Zhu,Xiaojian;Lu,Wei D.
- 通讯作者:Lu,Wei D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Lu其他文献
A field investigation into the characteristics and formation mechanisms of particles during the operation of laser printers and photocopiers.
现场调查激光打印机和复印机运行过程中颗粒的特征和形成机制。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qiang Wang;Daizhi An;Zhengquan Yuan;Rubao Sun;Wei Lu;Lili Wang - 通讯作者:
Lili Wang
Granular Fuzzy Modeling for Multidimensional Numeric Data: A Layered Approach Based on Hyperbox
多维数值数据的粒度模糊建模:基于 Hyperbox 的分层方法
- DOI:
10.1109/tfuzz.2018.2870050 - 发表时间:
2019-04 - 期刊:
- 影响因子:11.9
- 作者:
Wei Lu;Dan Shan;Witold Pedrycz;Liyong Zhang;Jianhua Yang;Xiaodong Liu - 通讯作者:
Xiaodong Liu
A candidate material EuSn2As2-based terahertz direct detection and imaging
基于EuSn2As2的候选材料太赫兹直接探测与成像
- DOI:
10.1038/s41699-022-00301-z - 发表时间:
2022-04 - 期刊:
- 影响因子:9.7
- 作者:
Changlong Liu;Yi Liu;Zhiqingzi Chen;Shi Zhang;Chaofan Shi;Guanhai Li;Xiao Yu;Zhiwei Xu;Libo Zhang;Wenchao Zhao;Xiaoshuang Chen;Wei Lu;Lin Wang - 通讯作者:
Lin Wang
Learning-Induced Suboptimal Compensation for PKCι/λ Function in Mutant Mice
突变小鼠中学习诱导的 PKCδ/δ 功能的次优补偿
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Tao Sheng;Shaoli Wang;D;an Qian;Jun Gao;Shigeo Ohno;Wei Lu - 通讯作者:
Wei Lu
Bilateral Areolar Approach Endoscopic Thyroidectomy for Low-risk Papillary Thyroid Carcinoma: A Review of 137 Cases in a Single Institute
双侧乳晕入路内镜甲状腺切除术治疗低危甲状腺乳头状癌:单一机构 137 例病例回顾
- DOI:
10.1097/sle.0b013e3182a50f1f - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Weili Gao;Liwei Liu;Guochao Ye;Wei Lu;L. Teng - 通讯作者:
L. Teng
Wei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Lu', 18)}}的其他基金
PFI-TT: Development of Lithium Metal Battery with Enhanced Reliability
PFI-TT:开发可靠性增强的锂金属电池
- 批准号:
2140984 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
I-Corps: Dendrite-Suppressing Separator for Next Generation Lithium-ion Batteries
I-Corps:用于下一代锂离子电池的枝晶抑制分离器
- 批准号:
2030680 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: Integrated memristor neural networks for in-situ analysis of intracellular neuronal recordings
合作研究:用于细胞内神经元记录原位分析的集成忆阻器神经网络
- 批准号:
1915550 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
FET: Medium: Memory Processing Unit (MPU) - An Efficient, Reconfigurable In-memory Computing Fabric
FET:介质:内存处理单元 (MPU) - 高效、可重新配置的内存计算结构
- 批准号:
1900675 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Design and growth of high entropy oxides with tailored ionic dynamics for memory and computing applications
为内存和计算应用设计和生长具有定制离子动力学的高熵氧化物
- 批准号:
1810119 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
SHF: Small: Efficient In-Memory Computing Architecture Based on RRAM Crossbar Arrays
SHF:小型:基于 RRAM Crossbar 阵列的高效内存计算架构
- 批准号:
1617315 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
I-Corps: Creating High Performance Electrodes for Li-ion Batteries
I-Corps:为锂离子电池制造高性能电极
- 批准号:
1358550 - 财政年份:2013
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
High-Performance Vertical Nanowire Heterojunction Transistors
高性能垂直纳米线异质结晶体管
- 批准号:
1202126 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
CAREER: Understanding, Development and Applications of Nanoscale Memristor Devices
职业:纳米级忆阻器器件的理解、开发和应用
- 批准号:
0954621 - 财政年份:2010
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Nanowire-Based High-Frequency, High-Q Electromechanical Resonators
基于纳米线的高频、高 Q 机电谐振器
- 批准号:
0804863 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
Lagrange网络实用同步的不连续控制研究
- 批准号:61603174
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
- 批准号:81172643
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
- 批准号:81070069
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
- 批准号:10972233
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
- 批准号:30900646
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
相似海外基金
Joint ionic control of strongly correlated oxides based on physics and chemistry methods
基于物理和化学方法的强相关氧化物的联合离子控制
- 批准号:
22K14475 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
- 批准号:
10668497 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Expanding the Range of Sodium Electrolytes: Bigger Anions, Supramolecular Size Control, and Ionic Liquids
扩大钠电解质的范围:更大的阴离子、超分子尺寸控制和离子液体
- 批准号:
2751138 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
- 批准号:
10528938 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Construction and Dynamic Interface Control of Responsive Porous Ionic Diodes
响应性多孔离子二极管的构建及动态界面控制
- 批准号:
22K14731 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies
职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制
- 批准号:
2144383 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Construction of protein distribution control system using ionic liquid/water two-phase system
利用离子液体/水两相体系构建蛋白质分布控制系统
- 批准号:
22K05221 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10645162 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Development of osmoregulation disruptors for tick control
开发用于蜱控制的渗透调节干扰剂
- 批准号:
10284772 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Development of osmoregulation disruptors for tick control
开发用于蜱控制的渗透调节干扰剂
- 批准号:
10432104 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别: