CCRI: Medium: Developing a Multi-Channel Naturalistic Audio Corpora for the Natural Language Processing Research Community
CCRI:Medium:为自然语言处理研究界开发多通道自然音频语料库
基本信息
- 批准号:2016725
- 负责人:
- 金额:$ 121.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on developing a massive audio resource of real-world speech communications related to task solving by engineers/scientists working to ensure the success of one of history’s greatest scientific and technical accomplishments - the NASA Apollo missions. Major challenges exist in exploring team based voice communications due to a lack of any comprehensive time-synchronized and transcribed audio resource. The research team will create the framework needed to recover and make available the entire team communications. This includes digitizing the extensive 50-year-old Apollo 30-track analog tape collection, and advance the necessary speech technology tools/resources to automatically generate meta-data that includes when speech occurs, all text transcripts, speaker identity, as well as aspects relating to speaker traits. The resource is expected to encompass 150,000 hours of audio from all Apollo missions. The research team will provide open user access to explore and navigate the community resource using an interactive web platform: Explore Apollo, as well as download audio and corresponding meta-data: Fearless Steps – Explore Apollo. ‘Finding Waldo’: a resource to identify all instances of individual NASA members across Apollo missions and to make this available to surviving personnel and family members as a tribute to the ‘Heroes behind the Heroes of Apollo’. The focused research communities include speech technology, speech and language communications, team psychology in social sciences, education/STEM, historians and preservation archivists. Outreach efforts will be through mini-workshops, tutorials, community challenges, and special sessions across various fields, providing opportunities to distribute and receive user feedback to enhance the resource. This resource will allow engineers, scientists, educators and historians unique data to develop new theories and models for how people work and respond rapidly to challenging problems, as well as promote science and math based (STEM) goals for space, history and team based learning.This project is focused on developing a massive audio resource of real-world team-based speech communications by engineers/scientists working to ensure the success of one of history’s greatest technical achievements, the NASA Apollo missions. There is significant need from the speech technology community for access to natural big-data speech corpora to develop next generation technologies. A critical challenge is the ability to employ audio that is team and task based and not simulated. This project will establish a sustainable multi-speaker task-based corpora generation process based on the recovery of Apollo missions, encompassing up to +150,000 hours of audio. Research activities include (i) establishing the framework needed to digitize the 50-year old Apollo 30-track analog tape collection, (ii) advance speech technology tools/resources to automatically generate meta-data that include speech activity, speech recognition transcript generation, speaker identity, as well as aspects relating to speaker traits. Specific advancements will address acoustic and expanded lexicon/language model requirements to encompass communication traits for NASA engineers. The research team will provide open user access to explore and navigate the community resource using an interactive web platform: Explore Apollo, and download audio and meta-data: Fearless Steps – Explore Apollo. The resource is significantly enhanced by advancing extensive machine learning speech technologies in transcript/meta-data generation for audio speaker diarization – the process of determining “who spoke, what, and when”. The technology offers a unique opportunity to provide portions of history, and tangible pieces of technology for multi-purpose use. The open-access resource provides freely available meta-data to propose and develop algorithms for speech activity detection, keyword spotting, speaker variability, sentiment, accent, language identification, multimodal systems, conversational analysis, speaker turn detection and individual as well as team assessment. The concept of ‘Where’s Waldo’ is used as a metaphor to pay tribute and yield personal recognition to the thousands of notable members across the Apollo missions in addition to using deep learning strategies to develop effective speaker tagging and hot-spot detection systems. This will impact the lives of the Apollo members and their families and provide additional education resources for future generations while also aiding as a historical archive.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目专注于开发与工程师/科学家解决任务相关的真实世界语音通信的大量音频资源,以确保历史上最伟大的科学和技术成就之一-美国宇航局阿波罗任务的成功。由于缺乏任何全面的时间同步和转录音频资源,探索基于团队的语音通信存在主要挑战。研究团队将创建恢复并使整个团队通信可用所需的框架。这包括数字化广泛的50年历史的阿波罗30轨道模拟磁带收集,并推进必要的语音技术工具/资源,以自动生成元数据,包括何时语音发生,所有文本文本,说话者身份,以及与说话者特征相关的方面。该资源预计将包括所有阿波罗任务的15万小时音频。研究小组将提供开放的用户访问,以探索和浏览社区资源,使用一个交互式网络平台:explore Apollo,以及下载音频和相应的元数据:Fearless Steps - explore Apollo。“寻找沃尔多”:一种资源,用于识别阿波罗任务中所有NASA成员的个体实例,并将其提供给幸存的人员和家庭成员,作为对“阿波罗英雄背后的英雄”的致敬。重点研究领域包括语音技术、语音和语言交流、社会科学中的团队心理学、教育/STEM、历史学家和保存档案学家。扩展工作将通过各种领域的小型研讨会、教程、社区挑战和特别会议,提供分发和接收用户反馈的机会,以增强资源。该资源将为工程师、科学家、教育工作者和历史学家提供独特的数据,为人们如何工作和快速应对具有挑战性的问题开发新的理论和模型,并促进基于空间、历史和团队学习的科学和数学(STEM)目标。这个项目的重点是开发一个庞大的音频资源,以真实世界的团队为基础的语音通信,由工程师/科学家工作,以确保历史上最伟大的技术成就之一,美国宇航局阿波罗任务的成功。语音技术界非常需要获取自然的大数据语音语料库来开发下一代技术。一个关键的挑战是使用基于团队和任务而非模拟的音频的能力。该项目将基于阿波罗任务的恢复,建立一个可持续的基于多演讲者任务的语料库生成过程,包括多达150,000小时的音频。研究活动包括(i)建立数字化50年前的阿波罗30轨模拟磁带收集所需的框架,(ii)推进语音技术工具/资源,以自动生成元数据,包括语音活动,语音识别转录生成,说话人身份以及与说话人特征相关的方面。具体的进展将解决声学和扩展词汇/语言模型要求,以涵盖NASA工程师的通信特征。研究小组将提供开放的用户访问,以探索和浏览社区资源,使用一个交互式网络平台:explore Apollo,并下载音频和元数据:Fearless Steps - explore Apollo。通过推进广泛的机器学习语音技术,该资源在音频说话者分化(确定“谁说了什么,什么时候说”的过程)的转录/元数据生成中得到显著增强。这项技术提供了一个独特的机会来提供历史的一部分,以及用于多种用途的有形技术。这个开放访问的资源提供了免费的元数据,用于提出和开发语音活动检测、关键词识别、说话人变化、情绪、口音、语言识别、多模态系统、会话分析、说话人转向检测以及个人和团队评估的算法。“沃尔多在哪里”的概念被用作一种隐喻,以表达对阿波罗任务中数千名著名成员的敬意和个人认可,此外还使用深度学习策略来开发有效的说话人标签和热点检测系统。这将影响阿波罗成员及其家人的生活,并为后代提供额外的教育资源,同时也有助于作为历史档案。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Measurement of Teachers' Talk: Indicators of Location and Quality in Science Activities
教师演讲的自动测量:科学活动中的位置和质量指标
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Buzhardt, J.;Irvin, D.W.;Hansen, J.H.L.;Kothalkar, P.;Consolver, K.;Luo, Y.;Rous, B.
- 通讯作者:Rous, B.
Challenges in Metadata Creation for Massive Naturalistic Team-Based Audio Data
基于团队的海量自然音频数据元数据创建的挑战
- DOI:10.21437/interspeech.2022-11243
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Belitz, Chelzy;Hansen, John H.L.
- 通讯作者:Hansen, John H.L.
Speaker tracking across a massive naturalistic audio corpus: Apollo-11
在大量自然主义音频语料库中跟踪说话者:Apollo-11
- DOI:10.1121/10.0008574
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chandra Shekar, Meena;Hansen, John H.
- 通讯作者:Hansen, John H.
Fearless Steps Apollo: Towards Community Resource Development for Science, Technology, Education, and Historical Preservation
无畏的阿波罗步伐:致力于科学、技术、教育和历史保护的社区资源开发
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Hansen, J.H.L.;Joglekar, A.;Shekar, M.M.C.;Chen, S.-J.;Liu X.
- 通讯作者:Liu X.
FEARLESS STEPS: ADVANCEMENTS IN SPEECH TECHNOLOGY AND CORPUS DEVELOPMENT FOR NATURALISTIC AUDIO
无所畏惧的脚步:自然音频语音技术和语料库开发的进步
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Joglekar, A.;Hansen, J.H.L.;Yousefi, M.;Chandra Shekar, M.;Chen, S.-J.;Belitz, C.
- 通讯作者:Belitz, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Hansen其他文献
An energy and power-aware approach to high-level synthesis of asynchronous systems
用于异步系统高级综合的能量和功率感知方法
- DOI:
10.1109/iccad.2010.5654169 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
John Hansen;Montek Singh - 通讯作者:
Montek Singh
Springer Publisher
施普林格出版社
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Huseyin Abut;John Hansen;Kazuya Takeda (Eds.) - 通讯作者:
Kazuya Takeda (Eds.)
Pedometer Use as Motivation for Physical Activity in Cardiac Tele-Rehabilitation
在心脏远程康复中使用计步器作为身体活动的动力
- DOI:
10.5334/ijic.2288 - 发表时间:
2015 - 期刊:
- 影响因子:2.4
- 作者:
C. Thorup;Mette Grønkjær;H. Spindler;J. Andreasen;John Hansen;B. Dinesen;Gitte Nielsen;E. E. Sørensen - 通讯作者:
E. E. Sørensen
Characterization of Glutamate Dehydrogenase from the Ammonia-oxidizing Chemoautotroph <em>Nitrosomonas europaea</em>
- DOI:
10.1016/s0021-9258(19)81462-x - 发表时间:
1967-01-25 - 期刊:
- 影响因子:
- 作者:
Alan B. Hooper;John Hansen;Roger Bell - 通讯作者:
Roger Bell
Concurrency-Enhancing Transformations for Asynchronous Behavioral Specifications: A Data-Driven Approach
异步行为规范的并发增强转换:数据驱动的方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
John Hansen;Montek Singh - 通讯作者:
Montek Singh
John Hansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Hansen', 18)}}的其他基金
COLLABORATIVE RESEARCH: Social-Emotional Analysis of the Language Environment (SEAL): Key Word & Phrase Spotting in Early Childhood Care Settings
合作研究:语言环境的社会情感分析 (SEAL):关键词
- 批准号:
2234916 - 财政年份:2023
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Second Language Speech Production: Formulation of Objective Speech Intelligibility Measures and Learner-Specific Feedback
EAGER:协作研究:第二语言语音生成:客观语音清晰度测量和学习者特定反馈的制定
- 批准号:
2140415 - 财政年份:2021
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Workshops on NASA Apollo Mission Audio as a Community Research Resource
将 NASA 阿波罗任务音频作为社区研究资源的研讨会
- 批准号:
1943365 - 财政年份:2019
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Collaborative Research: CSL-MultiAD: Assessing Collaborative STEM Learning through Rich Information Flow based on Multi-Sensor Audio Diarization
协作研究:CSL-MultiAD:通过基于多传感器音频二值化的丰富信息流评估协作 STEM 学习
- 批准号:
1918032 - 财政年份:2019
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in DRMS: The Consumer Logic of Anti-Government Antagonism
DRMS博士论文研究:反政府对抗的消费者逻辑
- 批准号:
1357620 - 财政年份:2014
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: 'Houston We Have A Solution': Novel Speech Processing Advancements for Analysis of Large Asynchronous Multi-Channel Audio Corpora
RI:小型:协作研究:“休斯顿,我们有一个解决方案”:用于分析大型异步多通道音频语料库的新颖语音处理进步
- 批准号:
1219130 - 财政年份:2012
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Collaborative Research: SBE Alliance: Great Lakes Alliance for the Social and Behavioral Sciences (GLASS)
合作研究:SBE 联盟:五大湖社会和行为科学联盟 (GLASS)
- 批准号:
0750599 - 财政年份:2007
- 资助金额:
$ 121.15万 - 项目类别:
Continuing Grant
Collaborative Research: Primary Elections for U.S. State and Federal Offices: A Comprehensive Database and Analysis
合作研究:美国州和联邦办公室初选:综合数据库和分析
- 批准号:
0617555 - 财政年份:2006
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
SBE Collaborative Research: Northwestern AGEP for SBE
SBE 合作研究:西北大学 AGEP for SBE
- 批准号:
0549069 - 财政年份:2005
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Interactions of the TCR co-receptors and p56LCK in an Ectothermic Model
变温模型中 TCR 共受体和 p56LCK 的相互作用
- 批准号:
0453924 - 财政年份:2004
- 资助金额:
$ 121.15万 - 项目类别:
Continuing Grant
相似海外基金
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Developing a new aspiration catheter solution for the treatment of large and medium vessel occlusions
开发用于治疗大中型血管闭塞的新型抽吸导管解决方案
- 批准号:
10699636 - 财政年份:2023
- 资助金额:
$ 121.15万 - 项目类别:
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 121.15万 - 项目类别:
Standard Grant
Medium- and long-term verification of developing competencies on lesson design and learning assessment through lesson study based on learning science
通过基于学习科学的课程研究,对课程设计和学习评估能力的发展进行中长期验证
- 批准号:
23K02727 - 财政年份:2023
- 资助金额:
$ 121.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Centre for Explainable Data Analytics (CEDA) for Developing Intelligent Systems for Small and Medium Sized Enterprises in Greater Toronto Area
可解释数据分析中心(CEDA)为大多伦多地区中小企业开发智能系统
- 批准号:
555944-2020 - 财政年份:2022
- 资助金额:
$ 121.15万 - 项目类别:
College and Community Innovation Program
Developing an attribution system based on seasonal and medium-range forecasts
开发基于季节性和中期预测的归因系统
- 批准号:
2696651 - 财政年份:2022
- 资助金额:
$ 121.15万 - 项目类别:
Studentship
Centre for Explainable Data Analytics (CEDA) for Developing Intelligent Systems for Small and Medium Sized Enterprises in Greater Toronto Area
可解释数据分析中心(CEDA)为大多伦多地区中小企业开发智能系统
- 批准号:
555944-2020 - 财政年份:2021
- 资助金额:
$ 121.15万 - 项目类别:
College and Community Innovation Program
Developing a versatile technique to create transgenic rodents and medium sized animals
开发一种多功能技术来创造转基因啮齿动物和中型动物
- 批准号:
21H02388 - 财政年份:2021
- 资助金额:
$ 121.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Centre for Explainable Data Analytics (CEDA) for Developing Intelligent Systems for Small and Medium Sized Enterprises in Greater Toronto Area
可解释数据分析中心(CEDA)为大多伦多地区中小企业开发智能系统
- 批准号:
555944-2020 - 财政年份:2020
- 资助金额:
$ 121.15万 - 项目类别:
College and Community Innovation Program
Analysis of lipid droplets in mouse and human fertilized eggs, and developing new culture medium by optimization of fatty acid composition.
分析小鼠和人类受精卵中的脂滴,并通过优化脂肪酸组成开发新的培养基。
- 批准号:
19K24046 - 财政年份:2019
- 资助金额:
$ 121.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




