Thermal imaging with ultrafine spatial resolution in the scanning electron microscope

扫描电子显微镜中具有超精细空间分辨率的热成像

基本信息

  • 批准号:
    2020842
  • 负责人:
  • 金额:
    $ 41.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

From cell phones to laptops to the internet of things, the defining trend of modern microelectronics is the relentless drive towards packing more processing power in smaller areas. A corollary is that the heat dissipation per unit area also increases exponentially, posing serious challenges in thermal management to keep the devices from overheating. Some cutting-edge technologies exploit nanoscale thermal phenomena such as heat-assisted magnetic recording and resistive random access memory, which rely on precise heat generation and dissipation at extraordinarily small length scales of ~10 nm and below. Clearly the rational design of such advanced nanoscale devices requires measuring their temperatures, yet direct experimental measurement of temperature at such small length scales remains extraordinarily challenging. An ideal measurement technique would have spatial resolution of 10 nm or less, operate without physical contact to the sample, work on many materials, and use widely available hardware. Developing such a measurement technique is the overarching vision of this project.Building on a preliminary proof-of-concept study, the goal of this project is to develop a novel scanning electron microscopy thermometry technique into a robust tool for temperature mapping. The team focuses on the ubiquitous secondary electron signal, which is already the standard for ultrahigh resolution (~1 - 10 nm) mapping of structure and geometry. The proposal envisions three major thrusts: (i) Experimentally clarify the underlying physics of how temperature affects the secondary electron signal. (ii) Rigorously measure and understand the limiting resolutions of this technique, in temperature, space, and time. (iii) Demonstrate the usefulness of this new experimental tool for innovative studies of nanoscale thermal phenomena as well as applications in device characterization. The intellectual merit of this project is firstly in developing scanning electron microscopy thermometry into a robust, practical tool for temperature mapping with ~10 nm spatial resolution, using signals and hardware which are widely available. Another contribution will be bringing concepts for rigorously quantifying spatial resolution from optics into the thermal community, specifically the thermal point spread function. Finally, the team will apply the tool to pursue the first ever direct observations of ballistic phenomena such as temperature reversal and localization via mapping their full temperature fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从手机到笔记本电脑再到物联网,现代微电子的决定性趋势是在更小的区域内封装更多的处理能力。一个必然的结果是,单位面积的散热也呈指数级增长,这对热管理提出了严峻的挑战,以防止设备过热。一些尖端技术利用纳米级热现象,例如热辅助磁记录和阻性随机存取存储器,它们依赖于~10纳米及以下的极小长度尺度上的精确发热和散热。 显然,这种先进的纳米器件的合理设计需要测量它们的温度,但在如此小的长度尺度上直接实验测量温度仍然非常具有挑战性。 理想的测量技术应具有10 nm或更小的空间分辨率,在不与样品物理接触的情况下操作,适用于许多材料,并使用广泛可用的硬件。 开发这样一种测量技术是该项目的总体愿景。在初步概念验证研究的基础上,该项目的目标是开发一种新的扫描电子显微镜测温技术,使其成为温度测绘的强大工具。该团队专注于无处不在的二次电子信号,这已经是结构和几何结构的高分辨率(~1 - 10 nm)映射的标准。 该提案设想了三个主要目标:(i)通过实验阐明温度如何影响二次电子信号的基本物理学。 (ii)严格测量和理解这种技术在温度、空间和时间方面的极限分辨率。 (iii)展示这种新的实验工具在纳米级热现象的创新研究以及在器件表征中的应用方面的实用性。 该项目的智力价值首先是将扫描电子显微镜测温技术发展成为一种强大的实用工具,用于使用广泛可用的信号和硬件进行~10 nm空间分辨率的温度映射。 另一个贡献将是将严格量化光学空间分辨率的概念引入热社区,特别是热点扩散函数。 最后,该团队将应用该工具,通过绘制完整的温度场,对弹道现象进行首次直接观测,如温度反转和局部化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Dames其他文献

Corner- and edge-mode enhancement of near-field radiative heat transfer.
近场辐射传热的角模式和边缘模式增强。
  • DOI:
    10.1038/s41586-024-07279-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Lei Tang;Lívia M Corrêa;Mathieu Francoeur;Chris Dames
  • 通讯作者:
    Chris Dames
受容性と志向性 : 志向性の哲学史におけるフッサールの功績は何処にあるのか
接受性与意向性:胡塞尔在意向性哲学史上的贡献在哪里?
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takuma Hori;Junichiro Shiomi;Chris Dames;中村充利;富山 豊
  • 通讯作者:
    富山 豊
Effective mean free path prediction in nanostructures by using numerical transmission model
使用数值传输模型有效预测纳米结构中的平均自由程
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takuma Hori;Junichiro Shiomi;Chris Dames
  • 通讯作者:
    Chris Dames
Analytical Models for Phonon Mean Free Path in Polycrystalline Nanostructures Based on Mean Square Displacement
基于均方位移的多晶纳米结构声子平均自由程解析模型
  • DOI:
    10.1063/5.0103562
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Takuma Hori;Chris Dames
  • 通讯作者:
    Chris Dames
Pulling together to control heat flow
齐心协力控制热流
  • DOI:
    10.1038/nnano.2012.4
  • 发表时间:
    2012-02-06
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Chris Dames
  • 通讯作者:
    Chris Dames

Chris Dames的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Dames', 18)}}的其他基金

GOALI: Nanoparticle Luminescence Thermometry with 10 nm Resolution for Challenging Environments
GOALI:适用于挑战性环境的 10 nm 分辨率纳米颗粒发光测温
  • 批准号:
    1512796
  • 财政年份:
    2015
  • 资助金额:
    $ 41.66万
  • 项目类别:
    Standard Grant
The 8th Japan-U.S. Joint Seminar on Nanoscale Transport Phenomena, July 13-16, 2014 in Santa Cruz, California
第八届日美纳米尺度输运现象联合研讨会,2014 年 7 月 13-16 日,加利福尼亚州圣克鲁斯
  • 批准号:
    1444345
  • 财政年份:
    2014
  • 资助金额:
    $ 41.66万
  • 项目类别:
    Standard Grant
CAREER: Mean Free Path Spectroscopy - Experimental determination of the mean free path distribution in solids
职业:平均自由程光谱 - 固体中平均自由程分布的实验测定
  • 批准号:
    1358370
  • 财政年份:
    2013
  • 资助金额:
    $ 41.66万
  • 项目类别:
    Standard Grant
CAREER: Mean Free Path Spectroscopy - Experimental determination of the mean free path distribution in solids
职业:平均自由程光谱 - 固体中平均自由程分布的实验测定
  • 批准号:
    1055317
  • 财政年份:
    2011
  • 资助金额:
    $ 41.66万
  • 项目类别:
    Standard Grant
Measuring the thermal conductivity of graphene
测量石墨烯的导热率
  • 批准号:
    0854554
  • 财政年份:
    2009
  • 资助金额:
    $ 41.66万
  • 项目类别:
    Standard Grant
Thermal and thermoelectric properties of graphene
石墨烯的热学和热电性质
  • 批准号:
    0756359
  • 财政年份:
    2008
  • 资助金额:
    $ 41.66万
  • 项目类别:
    Standard Grant

相似国自然基金

PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
  • 批准号:
    82371912
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
  • 批准号:
    92054301
  • 批准年份:
    2020
  • 资助金额:
    900.0 万元
  • 项目类别:
    重大研究计划
活细胞单分子成像定量研究EGFR内吞途径命运选择
  • 批准号:
    32000557
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于多尺度三维重构与拓扑分析的种子休眠与发育调控机制研究
  • 批准号:
    32000558
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
  • 批准号:
    31970754
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
核纤层蛋白维系染色体结构与调控基因表达的分子机理
  • 批准号:
    31970752
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于新生血管显像研究MSC治疗缺血性脑血管病的转化医学关键问题
  • 批准号:
    81171370
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
骨骼肌特定磷代谢物分子的影像学方法研究
  • 批准号:
    81171339
  • 批准年份:
    2011
  • 资助金额:
    14.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mapping the perivascular reticular network in health, aging, and AD
绘制健康、衰老和 AD 中的血管周围网状网络图
  • 批准号:
    10739104
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
  • 批准号:
    10698705
  • 财政年份:
    2023
  • 资助金额:
    $ 41.66万
  • 项目类别:
Do Atmospheric Ultrafine Particles Lodge in the Brain and Cause Cognitive Decline Leading to Alzheimer's Disease Related Dementias?
大气超细颗粒是否会滞留在大脑中并导致认知能力下降,从而导致阿尔茨海默病相关的痴呆症?
  • 批准号:
    10591354
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Next Generation Quantitative Acoustic Microscopy for Biomedical Application
用于生物医学应用的下一代定量声学显微镜
  • 批准号:
    10445570
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Extreme weather-related events and environmental exposures in the risk for Alzheimer's disease and related dementias
极端天气相关事件和环境暴露会增加阿尔茨海默病和相关痴呆症的风险
  • 批准号:
    10449041
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Cardiopulmonary Risk Assessment from Smoke Exposure at the Wildland Urban Interface
荒地城市界面烟雾暴露的心肺风险评估
  • 批准号:
    10563220
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Cardiopulmonary Risk Assessment from Smoke Exposure at the Wildland Urban Interface
荒地城市界面烟雾暴露的心肺风险评估
  • 批准号:
    10360921
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Extreme weather-related events and environmental exposures in the risk for Alzheimer's disease and related dementias
极端天气相关事件和环境暴露会增加阿尔茨海默病和相关痴呆症的风险
  • 批准号:
    10634720
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
Next Generation Quantitative Acoustic Microscopy for Biomedical Application
用于生物医学应用的下一代定量声学显微镜
  • 批准号:
    10707063
  • 财政年份:
    2022
  • 资助金额:
    $ 41.66万
  • 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10490338
  • 财政年份:
    2021
  • 资助金额:
    $ 41.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了