Powerful Magnetron Design, in particular for high frequencies (sub-THz) and for continuous wave- (cw-) operation

强大的磁控管设计,特别适用于高频(亚太赫兹)和连续波(cw)操作

基本信息

项目摘要

This research project deals with the magnetron, an electron beam tube, in which a structured electron beam interacts with an electro-magnetic resonance structure. Thus electric power can be generated at frequencies in the sub-millimeter wave range. This range is of high actual interest, because it offers a number of technical and scientific applications.Our investigations are aiming to develop a completely new physical model of the magnetron with the potential to realize a quantitative design following well-defined criteria. Thus the road for a follow-up project shall be paved leading to a powerful but still handy high frequency generator for the so-called terahertz (THz) frequency range. The new model shall, on one side, be able to establish optimization guidelines for the operational and geometrical parameters and, on the other side, detect new modes of operation. Of prominent importance here is the so-called continuous wave (or cw) operation of the magnetron which could not yet be realized at frequencies beyond the centimeter wave range. However, just cw operation would multiply the potentials of the magnetron for various applications. A characteristic feature of the new class of magnetrons will be an extensive application of a new material, known as meta-material, in realizing its resonance structure. The development of the model, its verification, and the detailed investigation of the operational modes is illustrated by practical experiments with both individual components and several magnetron prototypes. To this end, a close cooperation with a research institute in Kharkiv, Ukraine, of high international reputation has been established, which is leading in the development of magnetrons for the short millimeter wave range. The corresponding measurements are performed at both locations, in Hamburg and in Kharkiv.
本研究项目涉及磁控管,一种电子束管,其中结构电子束与电磁共振结构相互作用。因此,电能可以在亚毫米波范围内的频率上产生。这个范围具有很高的实际意义,因为它提供了许多技术和科学应用。我们的研究旨在开发一种全新的磁控管物理模型,具有实现定量设计的潜力,并遵循明确定义的标准。因此,后续项目的道路将铺平,导致一个强大但仍然方便的高频发生器,用于所谓的太赫兹(THz)频率范围。新模型一方面要能够建立操作参数和几何参数的优化准则,另一方面要能够发现新的操作模式。这里最重要的是磁控管的所谓连续波(或cw)操作,它还不能在超过厘米波范围的频率上实现。然而,仅仅连续波操作将使磁控管的电势在各种应用中倍增。新型磁控管的一个特点是广泛应用一种被称为“超材料”的新材料来实现其共振结构。该模型的发展、验证和工作模式的详细研究都通过单个元件和几个磁控管原型的实际实验来说明。为此目的,与乌克兰哈尔科夫的一个具有很高国际声誉的研究所建立了密切合作,该研究所在开发短毫米波范围的磁控管方面处于领先地位。在汉堡和哈尔科夫这两个地点进行了相应的测量。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-current cathode spatial harmonic magnetrons: analysis and realization based on metamaterial loaded slow wave structures
Advances in spatial-harmonic magnetrons with cold secondary-emission cathode
冷二次发射阴极空间谐波磁控管的研究进展
Novel spatial harmonic magnetrons and their potential applications
新型空间谐波磁控管及其潜在应用
Epsilon near zero loaded magnetrons, design and realization
Epsilon 近零负载磁控管的设计与实现
Application of metamaterials in spatial harmonic magnetrons
超材料在空间谐波磁控管中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Klaus Schünemann其他文献

Professor Dr.-Ing. Klaus Schünemann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Klaus Schünemann', 18)}}的其他基金

Entwicklung von Bauelement-Halterungen und integrierter Schaltungstechnologie für den Submillimeterwellenbereich
开发亚毫米波范围的元件支架和集成电路技术
  • 批准号:
    5347781
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
IMPATT-Oszillator
IMPATT 振荡器
  • 批准号:
    5276028
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Units
Entwicklung von Bauelement-Halterungen und integrierter Schaltungstechnologie für den Submillimeterwellenbereich
开发亚毫米波范围的元件支架和集成电路技术
  • 批准号:
    5347785
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Units
Optimierte Lawinenlaufzeitdioden
优化的雪崩延迟二极管
  • 批准号:
    5275984
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Units
Multi-Element-Oszillator
多元振荡器
  • 批准号:
    5276122
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Units
Multi-Element-Frequenzvervielfacher
多元件倍频器
  • 批准号:
    5108458
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Units
Optimierung von Heterofeldeffekttransistoren (HFET) mittels physikalischer Cellulär-Automaten-Simulation
使用物理元胞自动机模拟优化异质场效应晶体管 (HFET)
  • 批准号:
    5231476
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
  • 批准号:
    2243110
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Confocal DC/RF Magnetron-Sputter-System
共焦DC/RF磁控溅射系统
  • 批准号:
    515777855
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Magnetron Co-Sputtering System
磁控共溅射系统
  • 批准号:
    468939474
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
High-energy laser-assisted hybrid magnetron sputtering for enhanced thin film deposition
高能激光辅助混合磁控溅射增强薄膜沉积
  • 批准号:
    556340-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
CAREER: Advanced Surface Coating of Metallic Powders by Vibration-Enhanced High-Power Impulse Magnetron Sputtering for Sintering-Based Manufacturing
职业:通过振动增强高功率脉冲磁控溅射对金属粉末进行先进表面涂层,用于基于烧结的制造
  • 批准号:
    2042982
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Magnetron Sputtering Thin Film Deposition System for Research and Teaching at the University of North Florida
MRI:北佛罗里达大学购买磁控溅射薄膜沉积系统用于研究和教学
  • 批准号:
    2117007
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deposition and application of ultra-thin phase transition oxide thin films by high power pulsed magnetron sputtering
高功率脉冲磁控溅射超薄相变氧化物薄膜的沉积及应用
  • 批准号:
    20K14455
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High-energy laser-assisted hybrid magnetron sputtering for enhanced thin film deposition
高能激光辅助混合磁控溅射增强薄膜沉积
  • 批准号:
    556340-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Creating Highly Stable Single Atom Catalysts on Porous Supports through Magnetron Sputtering
通过磁控溅射在多孔载体上制备高度稳定的单原子催化剂
  • 批准号:
    2444678
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Excellence in Research: Multi-Charge Ion Implantation of Ultra-Wide Bandgap beta-Ga2O3 Semiconductor Grown by Magnetron Sputtering
卓越研究:磁控溅射生长的超宽带隙 β-Ga2O3 半导体的多电荷离子注入
  • 批准号:
    2000174
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了