Solid-state coherent interface between microwaves and Telecom-C band light

微波和电信-C 波段光之间的固态相干接口

基本信息

项目摘要

Quantum communication networks promises to distribute information in absolute secure way and it is based on dissemination of quantum entangled states over a large scale computing architecture. The core elements of future quantum networks, i.e. quantum repeaters as well as network nodes, can be realized by using qubits and quantum memories of diverse physical nature. Today, elementary quantum networks linking two remote single atoms have been demonstrated. Solid-state systems such as superconducting quantum circuits, nano-mechanical devices, and spin doped solids potentially offer larger scalability and faster operation time compared to systems based on the single atom approach. However, such solid-state devices operate at microwave and RFs, which are less suitable for long-range quantum communication than fiber-optical channels due to losses in cables and the high noise temperature of antennas (about 100 K) for radio-relay communication. To establish a fiber-optical link between them, one has to use a quantum media converter, i.e. a device which coherently interfaces matter and photonic qubits.In this project we will focus on frequency converted based on isotopically enriched Yttrium-Lithium tetrafluoride (YLiF4) doped with isotopes of erbium ions. The advantage of using rare-earth-ion doped crystal is the ability to implement multi-mode conversion protocol. Isotopically enriched crystals are known for their ultra-narrow inhomogeneous broadening, which is believed to be crucial for the implementation of quantum interfaces between Telecom-C around 1.54 um photons and superconducting quantum circuits. In our project we will focus on implementation of bi-directional conversion of coherent microwave to optical fields by using such a crystal. In order to reach the aim of the project few intermediate steps shall be fulfilled. Since there were only few experiments with such crystals, we will initially explore its coherent properties at millikelvin temperatures and small magnetic field, i.e. at operating conditions of superconducting qubits. Then we are going to implement conversion of microwave and optical fields to a spin excitation of doped rare-earth ions by using electromagnetically-induced-transparency and measure storage time. Finally, by using optical pumping or spin echo technique the spin wave excitation will be converted into coherent optical fields or microwave field and the conversion efficiency will be measured.
量子通信网络以绝对安全的方式分发信息,它是基于量子纠缠态在大规模计算体系结构上的传播。未来量子网络的核心元素,即量子中继器和网络节点,可以通过使用不同物理性质的量子比特和量子存储器来实现。今天,连接两个遥远的单原子的基本量子网络已经被证明。与基于单原子方法的系统相比,诸如超导量子电路、纳米机械器件和自旋掺杂固体的固态系统可能提供更大的可扩展性和更快的操作时间。然而,这种固态设备在微波和RF下工作,由于电缆中的损耗和用于无线电中继通信的天线的高噪声温度(约100 K),它们不太适合于远距离量子通信。为了在它们之间建立光纤链路,必须使用量子介质转换器,即一种将物质和光子量子比特相干接口的设备。在这个项目中,我们将专注于基于掺杂铒离子同位素的同位素富集的四氟化钇锂(YLiF 4)的频率转换。使用稀土离子掺杂晶体的优点是能够实现多模转换协议。同位素富集的晶体以其超窄的非均匀加宽而闻名,这被认为是实现1.54 μ m左右的光子与超导量子电路之间的量子接口的关键。在我们的项目中,我们将集中在实现双向转换的相干微波光场通过使用这样的晶体。为了达到项目的目标,应完成几个中间步骤。由于这种晶体的实验很少,我们将首先探索它在毫开尔文温度和小磁场下的相干特性,即在超导量子比特的操作条件下。然后利用电磁感应透明实现微波场和光场到掺杂稀土离子自旋激发的转换,并测量存储时间。最后,利用光抽运或自旋回波技术将自旋波激发转换为相干光场或微波场,并测量转换效率。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electromagnetically induced transparency in a mono-isotopic 167Er:7LiYF4 crystal below 1 Kelvin: microwave photonics approach.
  • DOI:
    10.1364/oe.400222
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    N. Kukharchyk;D. Sholokhov;O. Morozov;S. L. Korableva;A. Kalachev;P. Bushev
  • 通讯作者:
    N. Kukharchyk;D. Sholokhov;O. Morozov;S. L. Korableva;A. Kalachev;P. Bushev
Optical coherence of 166Er:7LiYF4 crystal below 1 K
  • DOI:
    10.1088/1367-2630/aaa7e4
  • 发表时间:
    2018-02-19
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kukharchyk, N.;Sholokhov, D.;Bushev, P. A.
  • 通讯作者:
    Bushev, P. A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jürgen Eschner, since 12/2019其他文献

Professor Dr. Jürgen Eschner, since 12/2019的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
超导量子器件中关于量子计算、电路量子电动力学和退相干的研究
  • 批准号:
    11174248
  • 批准年份:
    2011
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
分子高振动-转动激发态结构中的复杂相互作用
  • 批准号:
    11074204
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
以硫氧还蛋白还原酶为靶点的化学生物学研究
  • 批准号:
    21002047
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
激光催化下的旋量凝聚原子:自旋混合与共振拍
  • 批准号:
    10974045
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
基于SSD的大规模元数据处理技术研究
  • 批准号:
    60970025
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
李超代数的表示和仿射李代数的VCS表示及双代数结构
  • 批准号:
    10901028
  • 批准年份:
    2009
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coherent control of a solid state qubit on an optical nanofiber
光学纳米纤维上固态量子位的相干控制
  • 批准号:
    15K13544
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Controlled long-range coherent coupling of solid-state qubits
固态量子位的受控远程相干耦合
  • 批准号:
    EP/M020479/1
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Quantum-Coherent Strong Coupling Between Spins and Photons in Solid-State Devices
固态器件中自旋和光子之间的量子相干强耦合
  • 批准号:
    470838-2014
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Renovation of coherent high-brightness visible-deep ultravaiolet sources with praseodymium solid-state lasers
镨固体激光器相干高亮度可见深紫外光源改造
  • 批准号:
    26286065
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase II: A Simple and Practical Solid-State 157nm and 193nm Coherent Light Source for Applications in Lithography Development
SBIR 第二阶段:用于光刻开发应用的简单实用的固态 157nm 和 193nm 相干光源
  • 批准号:
    0349601
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research study on development of a CW all-solid-state coherent light source in mid-infrared region
中红外区连续波全固态相干光源研制研究
  • 批准号:
    14550040
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: A Simple and Practical Solid-State 157 nm Coherent Light Source for Applications in Lithography Development
SBIR 第一阶段:用于光刻开发的简单实用的固态 157 nm 相干光源
  • 批准号:
    0214766
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
COHERENT SCATTERING METHODS IN SOLID STATE NMR
固态核磁共振中的相干散射方法
  • 批准号:
    6279735
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
Quasi-optical oscillator with a solid state device array at millimeter wavelengths
具有毫米波长固态器件阵列的准光振荡器
  • 批准号:
    07455146
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conventional and Coherent Quantum 1/f Effects in Solid State Electronic Devices and Microstructures
固态电子器件和微结构中的传统和相干量子 1/f 效应
  • 批准号:
    9207844
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了