多元環の傾理論に現れる種々の対象の自己相似性

多维代数倾斜理论中出现的各种物体的自相似性

基本信息

  • 批准号:
    23K12957
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

淺井 聡太其他文献

淺井 聡太的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('淺井 聡太', 18)}}的其他基金

多元環の導来圏と安定性条件による実Grothendieck群の部屋構造
基于代数派生范畴和稳定条件的实格罗腾迪克群的房间结构
  • 批准号:
    20J00088
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ADE型メッシュ多元環の導来同値・安定同値分類
ADE型网格代数的导出等价/稳定等价分类
  • 批准号:
    16J02249
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

微分次数付き圏のカラビ・ヤウ構造と多元環の表現論
微分阶范畴的Calabi-Yau结构与代数表示论
  • 批准号:
    22KJ0737
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
圏論的性質に着目した準遺伝多元環の構成
关注范畴论性质的准遗传代数的构建
  • 批准号:
    23K12959
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多元環の表現論に現れる拡大閉部分圏の包括的研究
代数表示论中出现的扩展封闭子范畴的综合研究
  • 批准号:
    22KJ1592
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
稠密なgベクトル扇を持つ多元環の分類と性質の研究
稠密g矢量扇代数性质的分类与研究
  • 批准号:
    21K13761
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多元環の箙構造とホッホシルトホモロジー次元
多维环的颤动结构和Hochschild同调维数
  • 批准号:
    21K13776
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多元環の導来圏と安定性条件による実Grothendieck群の部屋構造
基于代数派生范畴和稳定条件的实格罗腾迪克群的房间结构
  • 批准号:
    20J00088
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多元環の表現論と圏化
表示论和代数分类
  • 批准号:
    20K03539
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
削除鎖を用いた大域次元が有限な多元環の研究
使用删除链研究具有有限全局维数的代数
  • 批准号:
    19K14513
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
前射影多元環の導来圏の研究
原投影代数的派生范畴的研究
  • 批准号:
    17J00652
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
曲面上の組合せ論のブラウアーグラフ多元環を用いた圏化
使用布劳尔图代数对曲面上的组合进行分类
  • 批准号:
    17J05537
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了