正則冪零ヘッセンバーグ多様体と正則半単純ヘッセンバーグ多様体の幾何

全纯幂零Hessenberg流形和全纯半单Hessenberg流形的几何

基本信息

  • 批准号:
    23K12981
  • 负责人:
  • 金额:
    $ 2.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

堀口 達也其他文献

堀口 達也的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('堀口 達也', 18)}}的其他基金

ヘッセンバーグ多様体上のシューベルトカルキュラス
Hessenberg 流形上的舒伯特微积分
  • 批准号:
    19K14508
  • 财政年份:
    2019
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
正則なヘッセンバーグ多様体の研究
正则Hessenberg流形的研究
  • 批准号:
    17J04330
  • 财政年份:
    2017
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
シュプリンガー多様体のシューベルトカルキュラスと組合せ的差分商作用素の研究
舒伯特微积分与施普林格流形组合差商算子的研究
  • 批准号:
    15J09343
  • 财政年份:
    2015
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

組合せ的変異理論から見る旗多様体のトーリック退化の探究
从组合突变理论探讨旗品种环面退化
  • 批准号:
    24K00521
  • 财政年份:
    2024
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
旗多様体の量子K群における構造定数の組合せ論的な記述
量子K群标志流形中结构常数的组合描述
  • 批准号:
    23K03045
  • 财政年份:
    2023
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
半無限旗多様体を用いた量子Schubert calculusの研究
使用半无限标志流形研究量子舒伯特微积分
  • 批准号:
    22KJ2908
  • 财政年份:
    2023
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
半無限旗多様体の同変 K-群とアフィン量子群のレベル・ゼロ表現の研究
半无限旗流形等变K群和仿射量子群的零级表示研究
  • 批准号:
    21K03198
  • 财政年份:
    2021
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
クラスター構造を用いた旗多様体のトーリック退化の研究
基于簇结构的旗形流形环面退化研究
  • 批准号:
    20K14281
  • 财政年份:
    2020
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
旗多様体上の完全可積分系の幾何学とクラスター代数
旗形流形上完全可积系统的几何和簇代数
  • 批准号:
    19K03503
  • 财政年份:
    2019
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多重旗多様体の軌道分解
多旗流形的轨道分解
  • 批准号:
    16J06813
  • 财政年份:
    2016
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
GKM理論による旗多様体の整係数同変コホモロジーの決定
GKM理论确定旗形流形积分系数等变上同调
  • 批准号:
    14J01614
  • 财政年份:
    2014
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
旗多様体の量子コホモロジーと可積分系
旗形流形和可积系统的量子上同调
  • 批准号:
    11F01319
  • 财政年份:
    2011
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
旗多様体上のD加群の積分変換
D 模在标志流形上的积分变换
  • 批准号:
    01F00709
  • 财政年份:
    2001
  • 资助金额:
    $ 2.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了