リーマン面上の射影構造の離散的ホロノミー表現の研究

黎曼曲面上射影结构的离散完整表示研究

基本信息

  • 批准号:
    12740084
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

閉曲面S上に入る射影構造、すなわち局所的にリーマン球面をモデルとし,座標変換がメビウス変換であるような幾何構造を考える.リーマン面上の射影構造全体の空間は,その上の正則2次微分全体のなすベクトル空間と同一視することができるが,リーマン面の複素構造も変形して面S上,の全射影構造の空間を考えると,タイヒミュラー空間を底空間とし,各ファイバーが正則2次微分の複素ベクトル空間である解析的バンドルP(S)が得られる.P(S)からSの基本群のPSL(2, C)表現空間への写像で,射影構造に対してそのホロノミー表現を対応させたものをホロノミー写像という.面の基本群の離散表現空間は複素力学系理論における有理関数のマンデルブロー集合に相当するものである.これを擬等角写像等の複素解析的方法と,面上の双曲構造およびPSL(2, C)表現に対応して現れる3次元双曲多様体の幾何学を用いて解析した.マンデルブロー集合の境界の解析のためには,擬フックス群の場合に射影構造の構成法の一意性を述べたGoldmanの定理を,ホロノミー表現が全退化群となるものにも拡張することが必要になった.このためには,展開写像から決まるある種の領域がリーマンのを位相的には単純に分割していることを示し,その分割から展開写像の構成法に関する情報を引き出すことが問題であった.極限集合の局所連結性は仮定できないので,古典的な平面上の等角写像の境界挙動の解析を用いた新しい手作りの議論が要求された.Goldmanの定理の拡張のためのプログラムが公表でき,いくつかのステップを設定し,リーマン面上の単連結領域に関する論文を書いた.しかし,全退化群の極限集合を考える過程で,連続体の分解可能性という概念が議論のために本質的であることにはじめて気付いた.これはgeneral topologyにおける問題であったが,それ自身膨大な研究がされている分野であると同時に,力学系の理論でも特異集合の分解可能性が問題の本質になっている場合が多い.実際,複素力学系のジュリア集合の分解可能性についてもRogersによる一連の仕事が既になされていた.それをクライン群の場合に焼き直した論文を書いた.
Closed surface S に into る projective structure, す な わ ち bureau of に リ ー マ ン spherical を モ デ ル と し, coordinate variations in が メ ビ ウ ス variations in で あ る よ う な geometric structure を exam え る. リ ー マ ン の projective structure on the surface of all は の space, そ の の on regular two differential all の な す ベ ク ト ル と the same visual space す る こ と が で き る が, リ ー マ ン の complex Grain structure も - shaped し て surface S, の whole projective space structure の を exam え る と, タ イ ヒ ミ ュ ラ ー space を bottom space と し, each フ ァ イ バ ー が regular two differential の complex element ベ ク ト ル space で あ る parsing バ ン ド ル P (S) が ら れ る. P (S) か ら S の fundamental group の PSL (2, C) performance space へ の write like で, projective structure に し seaborne て そ の ホ ロ ノ ミ ー performance を 応 seaborne さ せ た も の を ホ ロ ノ ミ ー write like と い う. Surface の fundamental group の discrete and majored in mechanical performance space は complex element theory に お け る rational number of masato の マ ン デ ル ブ ロ ー collection に quite す る も の で あ る. こ れ を quasi isometric write like と の complex element analytic methods, such as surface の hyperbolic tectonic お よ び PSL (2, C) performance に 応 seaborne し て れ now more than three dimensional hyperbolic る を の others body geometry with い て parsing し た. マ ン デ ル ブ ロ ー collection の realm の parsing の た め に は, quasi フ ッ ク ス の occasions に projective constructing の a meanings of law の を above べ た Goldman を の theorem, ホ ロ ノ ミ ー が full performance degradation of と な る も の に も company, zhang す る こ と が necessary に な っ た. こ の た め に は, expand to write like か ら definitely ま る あ る kind の field が リ ー マ ン の を phase of に は 単 pure に segmentation し て い る こ と を し, そ の segmentation か ら spread write like の composition method に masato す る intelligence を lead き out す こ と が problem で あ っ た. Set limits set の bureau provides は 仮 で き な い の で, classic な plane の isometric write like の realm 挙 dynamic analytical を の use い た new し い hand made り の comment が requirements さ れ た. Goldman の theorem の company, zhang の た め の プ ロ グ ラ ム が male table で き, い く つ か の ス テ ッ プ を setting し リ ー マ ン surface の 単 link field に masato す る papers を book い た. し か し, degradation of の limit set を exam え で る process, even 続 body の decomposition possibility と い う concept が comment の た め に essential で あ る こ と に は じ め て 気 pay い た. こ れ は general Topology に お け る problem で あ っ た が, そ れ itself expands な research が さ れ て い る eset で あ る と に at the same time, the department of force の theory で も specific collection の problem decomposition possibility が の essence に な っ て い が い more る occasions. Be international, complex element force department の ジ ュ リ ア collection の decomposition possibility に つ い て も Rogers に よ る for が の shi things both に な さ れ て い た. そ れ を ク ラ イ ン group の occasions に 焼 き straight し を た paper book い た.

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Matsuzaki: "Local geometric finiteness of Kleinian groups"数理解析研究所講究録. 1163. 42-45 (2000)
K.Matsuzaki:“克莱因群的局部几何有限性”数学科学研究所 Kokyuroku。1163. 42-45 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Matsuzaki: "The Hausdorff dimension of the limit sets of infinitely generated Kleinian groups"Math.Proc.Camb.Phil.Soc.. 128. 123-139 (2000)
K.Matsuzaki:“无限生成克莱因群的极限集的豪斯多夫维数”Math.Proc.Camb.Phil.Soc.. 128. 123-139 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Matsuzaki: "Dynamics of Kleinian groups-the Haundorff dimension of limit set"AMS Translations. 204. 23-44 (2001)
K.Matsuzaki:“Kleinian群的动力学-极限集的Haundorff维数”AMS翻译。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Matsuzaki: "Simply connected domains on a hyperbolic surface"New Zealand J. Math.. (発売予定).
K.Matsuzaki:“双曲曲面上的简单连通域”新西兰 J. Math..(待发布)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Matsuzaki: "Convergence of the Hansdorff dimension for algebraically convergent sequences of Kleinian groups"Contemporary Math.. 256. 243-254 (2000)
K.Matsuzaki:“克莱因群代数收敛序列的汉斯多夫维数的收敛性”当代数学.. 256. 243-254 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

松崎 克彦其他文献

松崎 克彦的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('松崎 克彦', 18)}}的其他基金

レブナー方程式とタイヒミュラー空間論
Lobner 方程和 Teichmuller 空间理论
  • 批准号:
    23K25775
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
画像処理における2次元曲線の変形の効率化と等角接合による認証
使用共形连接进行图像处理和身份验证中二维曲线变形的效率
  • 批准号:
    23K17656
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Loewner equation and Teichmueller space theory
Loewner 方程和 Teichmueller 空间理论
  • 批准号:
    23H01078
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of the universal Teichmüller space in harmonic analysis
普遍理论
  • 批准号:
    21F20027
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quasiconformal extension in differential geometry and theory of the universal Teichmueller space in harmonic analysis
微分几何中的拟共形扩张和调和分析中的通用 Teichmueller 空间理论
  • 批准号:
    18H01125
  • 财政年份:
    2018
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
熱力学形式によるクライン群の幾何の研究
热力学形式克莱因群几何形状的研究
  • 批准号:
    14F04321
  • 财政年份:
    2014
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
複素力学系の群論への応用:Burnside問題とHopf問題
复杂动力系统在群论中的应用:Burnside 问题和 Hopf 问题
  • 批准号:
    20654016
  • 财政年份:
    2008
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
クライン群と複素力学系の研究
克莱因群和复杂动力系统的研究
  • 批准号:
    08740090
  • 财政年份:
    1996
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
双曲的多様体の剛性と離散群のエルゴード性の研究
双曲流形的刚度和离散群的遍历性研究
  • 批准号:
    06854004
  • 财政年份:
    1994
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
双曲的三次元多様体とクライン群
双曲三维流形和克莱因群
  • 批准号:
    05740085
  • 财政年份:
    1993
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Studentship
A Pathway to the Confirmation and Characterisation of Habitable Alien Worlds
确认和描述宜居外星世界的途径
  • 批准号:
    MR/Y011759/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Studentship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Research Grant
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
  • 批准号:
    10095606
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Collaborative R&D
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
  • 批准号:
    10097846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Collaborative R&D
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
  • 批准号:
    10098114
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    EU-Funded
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了