軌道不安定性による多自由度ハミルトン力学系の普遍的性質に関する研究

轨道不稳定引起的多自由度哈密顿动力系统的普适性质研究

基本信息

  • 批准号:
    12750060
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

多自由度力学系は、一般には非可積分つまりカオス系となるため解析的な手法を用いた理解が難しい。そこで、カオス系の特徴である軌道の指数的不安定性を定量化したリアプノフ指数と、その不安定方向を表すリアプノフベクトルを数値的に求めることにより、系の性質を調べる方法が有用な方法の一つとなっている。本研究の目的は、ハミルトン系に対してこのアプローチ方法を改良・発展させ、マクロな物理的現象をミクロな力学系の立場から理解することにある。力の大きさが有限なハミルトン系では、軌道の進行方向とハミルトニアンの勾配方向との2方向に対しては、指数的軌道不安定性が発生しないことがわかっている。よって、純粋に不安定もしくは安定な方向を得るためには、これら2方向を他の方向から分離しなければならない。つまり、初期時刻でこれら2方向を表す平面に垂直なリアプノフベクトルは、任意の時刻で垂直であるのが望ましい。しかし、従来の方法ではこの要求は満たされない。そこで、運動方程式を測地線方程式として表す幾何学的な方法を用いた。この方法の利点は、曲率と不安定性の関係など、軌道不安定性の幾何学的なイメージが明確になることである。従来の幾何学的方法では、配位空間に適当なリーマン計量を導入していたが、本研究ではこれを相空間にリフトすることにより、上記の要求を満たすような方法論を理論的に確立することに成功した。また、数値計算のアルゴリズムを開発することにより、実装することにも成功し、リアプノフ指数は従来の方法と一致するが、リアプノフベクトルは一致しないことを確認した。応用としてこの方法を二次相転移をおこす系に適用した結果、次の示唆が得られた。(1)臨界点に近づくにつれ、マクロ変数の揺らぎがミクロな不安定性を活用する度合いが大きくなる(2)マクロ変数の揺らぎの発散が、リアプノフベクトルの方向の相関関数に現れるこれらの解析を推進することにより、臨界現象をミクロな立場から理解すること、また逆にミクロな力学系の未解決な問題を解決するためのヒントを得られることなどが期待できる。
Multi-degree-of-freedom mechanical systems are generally non-integrable and difficult to understand by analytical methods. A method for quantifying the instability of the orbital index and expressing the instability direction of the system is useful in determining the numerical value of the instability index and adjusting the system properties. The purpose of this study is to improve and develop the methods for solving problems in the field of physics, and to understand problems in the field of mechanics. The orbital instability occurs in the two directions of the orbital motion. The direction of stability is different from the direction of stability. At the beginning, the two directions are vertical to the surface, and at any time, the two directions are vertical to the surface The method is to ask for a solution. The equations of motion and geodetic equations are used in geometric methods. The relationship between curvature and instability and the geometric definition of orbital instability The method of geometry is introduced into the coordination space, and the method of calculation is established successfully in this study. For example, if you want to make a decision, you can make a decision. If you want to make a decision, you can make a decision. The second phase shift method is applicable to the second phase shift. (1)The critical point is close to the point, and the critical point is close to the point. The critical point is close to the point. Unsolved problems in inverse mechanics are expected to be solved.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Y.YAMAGUCHI, T.IWAI: "Geometric approach to Lyapunov Analysis in Hamiltonian Dynamics"Physical Review E. 64. 066206 (2001)
Y.Y.YAMAGUCHI、T.IWAI:“哈密顿动力学中李雅普诺夫分析的几何方法”物理评论 E. 64. 066206 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山口 義幸其他文献

山口 義幸的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山口 義幸', 18)}}的其他基金

長距離相互作用系における異常現象の普遍性解析と応用
远距离相互作用系统异常现象的普遍性分析及应用
  • 批准号:
    21K03402
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
長距離相互作用系のダイナミクスと臨界現象および応用
远程相互作用系统的动力学、临界现象和应用
  • 批准号:
    16K05472
  • 财政年份:
    2016
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
長距離相互作用ハミルトン系の非平衡ダイナミクス
长程相互作用哈密顿系统的非平衡动力学
  • 批准号:
    16740223
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
軌道不安定性による二次相転移現象の解析
轨道不稳定引起的二级相变现象分析
  • 批准号:
    14750051
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
トップヒートモードで作動する伝熱促進素子の動作特性
顶热模式下强化传热元件的工作特性
  • 批准号:
    13750177
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ハニカムコアを持つ保温壁の熱伝達率測定
蜂窝芯保温墙体传热系数测量
  • 批准号:
    07750241
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ハニカムコアで仕切られた鉛直多孔質層内のふく射・対流伝熱
由蜂窝芯分隔的垂直多孔层中的辐射/对流换热
  • 批准号:
    05750199
  • 财政年份:
    1993
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開
使用变分方法和拓扑构建和发展哈密顿系统新理论
  • 批准号:
    23K25778
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開
使用变分方法和拓扑构建和发展哈密顿系统新理论
  • 批准号:
    23H01081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
フレア理論を用いた古典ハミルトン系の研究
利用耀斑理论研究经典哈密顿系统
  • 批准号:
    11J01157
  • 财政年份:
    2011
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ハミルトン系の可縮でない周期軌道を用いたフレアーホモロジーとその応用
哈密​​顿系统中不可压缩周期轨道的 Flair 同调及其应用
  • 批准号:
    07J03956
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
長距離相互作用ハミルトン系の非平衡ダイナミクス
长程相互作用哈密顿系统的非平衡动力学
  • 批准号:
    16740223
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ハミルトン系の学習制御に関する研究
哈密​​顿系统学习控制研究
  • 批准号:
    15760317
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
特異ポテンシャルにおけるハミルトン系に対する変分的研究
奇异势哈密顿系统的变分研究
  • 批准号:
    15740112
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
楕円曲線上フックス型・合流型微分方程式のモノドロミー保存変形が従うハミルトン系
椭圆曲线上 Fuchs 和汇流型微分方程的单向保持变形的哈密顿系统
  • 批准号:
    00J08760
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
内部自由度をもつハミルトン系とクラスターの動力学
具有内部自由度和簇动力学的哈密顿系统
  • 批准号:
    07240228
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
無限自由度のハミルトン系に対するシンプレクティック数値積分法
无限自由度哈密顿系统的辛数值积分方法
  • 批准号:
    06221267
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了