リッチ流による4次元多様体のリプシッツ幾何学の創始

利玛窦风格的 4 维流形 Lipschitz 几何起源

基本信息

  • 批准号:
    16654009
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

1.閉面曲上のリッチ流は最終的には定曲率計量に共形構造を保って収束することが知られている。閉曲面上のリッチ流とともに、種種の幾何不変量がどの様に変化するか、例えば単調性は成立するかなどを考察した。特に、球面上の等周定数の単調性(ハミルトン)を一般の閉曲面上で考察した。その結果、等周定数の単調性そのものは成立しないであろうが、その振舞を追跡することは可能と思われる。今後の課題であろう。また、開曲面の場合のリッチ流の振舞はまだまだ謎に包まれている。研究代表者のM2学生である横田巧氏が、開曲面上のリッチ流の下で、絶対全曲率は単調非増加であり、また全曲率は不変であることを証明した。この結果は、今後一般次元への様々は方向への一般化が期待される。今後の課題として、この方向で非コンパクト多様体の無限遠の幾何とリッチ流の幾何・解析との関連を明らかにすることは大変重要と思われる。2.3月に筑波大学で開催した研究集会「リーマン幾何と幾何解析」において、国内の研究者と意見交流ができて本研究遂行の為に有益であった。特に、小林亮一氏(名古屋大学多元数理科学研究科)との議論などを経て、ホロノミーとリッチ流の関係といく新たな研究上の視点が得られたのは、将来の研究遂行上、有益である。3.3次元多様体の幾何化に対するPerelman氏の研究が最終的に肯定されつつある。その中で、J.Morgan氏との電子メールを通じて、3次元多様体の崩壊理論(塩谷隆一山口孝男)の議論を微修正できた。これにより、J.Morgan氏とG.Tian氏によってPerelman氏の3次元多様体の幾何化の仕事が全面的に肯定される日が遠くないのではないかと期待している。今年度、この方面でも貢献出来たと思う。
1。众所周知,封闭表面上的丰富流量最终以恒定曲率仪表的形式收敛。我们已经检查了该物种的几何不变性如何随封闭表面上的丰富流量而变化,例如单调性是否存在。特别是,在一般的闭合表面上检查了球形表面上的同为中心常数的单调性(汉密尔顿)。结果,相等常数本身的单调性​​是不可能的,但似乎可以跟踪其行为。这可能是未来的挑战。此外,在开放表面的情况下,丰富的行为方式仍然笼罩在神秘之中。调查员的M2学生洋子Takumi已证明,在开放表面上的丰富流动下,绝对总曲率是单调的,无刺激性,并且总曲率不变。预计将来该结果将在未来进行概括,以作为对一般维度的概括。作为未来的挑战,阐明非跨歧管的无限几何形状与沿该方向的丰富流量几何形状和分析之间的关系之间的关系似乎非常重要。二月。在3月在杜斯库巴大学举行的“ Rhehmann几何和几何分析”的研究会议上,这对于进行这项研究很有用。特别是,在与Kobayashi Ryoichi(名古屋大学多边数学科学研究生院)进行了讨论之后,将来的研究能够获得新的研究观点,这是有益的。 3。佩雷尔曼(Perelman)对三维流形的几何形状的研究终于开始得到肯定。在这种情况下,通过与J. Morgan的电子邮件,我能够稍微修改有关3D歧管崩溃理论的讨论(Shiotani Ryuichi Yamaguchi Takao)。这希望不久之后,J。Morgan和G. Tian在Perelman的三维流形的几何形状上的工作将充分肯定这一天。我认为今年我也能够为这一领域做出贡献。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alexandrov空間の位相的安定性
Alexandrov 空间的拓扑稳定性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    MORITA;Shigeyuki;T.Yamaguchi;山口孝男
  • 通讯作者:
    山口孝男
Volume collapsed three-manifolds under a lower curvature bound
体积在曲率下界下塌陷三流形
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山口 孝男其他文献

Steinberg variety and moment maps over multiple flag varieties I , II
多旗品种 I 、 II 上的 Steinberg 品种和矩图
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atsushi Ishii;Naoko Kamada;Seiichi Kamada;Masato Wakayama;山口 孝男;西山 享
  • 通讯作者:
    西山 享
リーマン多様体の崩壊と本質的被覆
黎曼流形的塌缩和本质覆盖
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ed.by Dijk;Gerrit van/Wakayama;Masato;山口 孝男
  • 通讯作者:
    山口 孝男
崩壊とスペクトル逆問題
塌缩和谱逆问题
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atsushi Ishii;Naoko Kamada;Seiichi Kamada;Masato Wakayama;山口 孝男
  • 通讯作者:
    山口 孝男

山口 孝男的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山口 孝男', 18)}}的其他基金

多様体の収束・崩壊の一般理論の構築に向けて
走向流形收敛和崩溃的一般理论的构建
  • 批准号:
    23K20790
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
多様体の収束・崩壊の一般理論の構築に向けて
构建流形收敛和崩溃的一般理论
  • 批准号:
    21H00977
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
リッチ流による収束理論の新展開
利玛窦式收敛理论的新发展
  • 批准号:
    20654005
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
極小曲面による3次元アレクサンドロフ空間の分類理論の創始
使用最小曲面的 3 维 Alexandrov 空间分类理论的起源
  • 批准号:
    11874015
  • 财政年份:
    1999
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
特異リッチ曲率をもつ空間の研究
奇异里奇曲率空间的研究
  • 批准号:
    09874021
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
多様体の曲率と大域構造
流形曲率和全局结构
  • 批准号:
    03740048
  • 财政年份:
    1991
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
リーマン多様体の曲率とハウスドルフ距離構造
黎曼流形的曲率和豪斯多夫距离结构
  • 批准号:
    62740050
  • 财政年份:
    1987
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
完備リーマン多様体の位相構造と幾何構造(曲率,直径,体積等)との関連について
论完全黎曼流形的拓扑结构与几何结构(曲率、直径、体积等)的关系
  • 批准号:
    61740050
  • 财政年份:
    1986
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

トライセクションによる 4 次元多様体の微分構造の研究
4维流形三等分微分结构研究
  • 批准号:
    24KJ1561
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ゲージ理論とシンプレクティック・コンタクト幾何学
规范理论和辛接触几何
  • 批准号:
    22KJ1293
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
開4次元多様体に対するゲージ理論とその応用
规范理论及其在开四维流形中的应用
  • 批准号:
    22K13921
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
族のゲージ理論の境界付き4次元多様体への拡張
将族规范理论扩展到有界 4 维流形
  • 批准号:
    21K13785
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diffeomorphism group and graph homology
微分同胚群和图同源性
  • 批准号:
    21K03225
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了