カンドルホモロジーと結び目不変量のバイカンドルへの一般化に関する研究
Candle同源性及结不变量推广到双象限的研究
基本信息
- 批准号:17654017
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Exploratory Research
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
R.Fenn教授、鎌田直子氏の協力のもとで2行2列ブダペストスイッチを用いて4元数バイカンドルによる結び目と仮想結び目、およびそれを拡張する概念である長仮想結び目の不変量を調べた。以前分かっていた長仮想結び目の合成に関する公式(2つの長仮想結び目の合成の多項式不変量は、もとの長仮想結び目の多項式不変量の積に一致する)は、もととなる非可換環上の加群のレベルでも、もとの2つの長仮想結び目の加群(の表示)からある方法を用いて構成されることと、上側のエンドを削除する場合の加群、下側のエンドを削除する場合の加群など数種類の異なる(加群のレベルでの)不変量が得られることが明らかとなった。それらを更に1変数ローラン多項式環への表現を用いて多項式不変量を得ることができる。仮想結び目の中でも多項式不変量では自明な結び目と区別することが難しいことで有名な「岸野の結び目」は、非自明な2つの長仮想結び目の合成として構成されている。我々のバイカンドルを利用した不変量は、そのような結び目に対して有効に働くことが分かった。仮想結び目の実交差点において、上下の情報を無くした概念であるフラット仮想結び目にも我々の方法は適用できる。その場合はWey1代数上の加群に値を持つ不変量が自然に得られることが分かった。Wey1代数上の加群に値を持つフラット仮想結び目については、V.Turaev教授とR.Fenn教授の独自の研究があり、それと我々の加群から来る不変量との関係も明らかとなった。
Professor R.Fenn, Naoko Yoshida, two rows, two columns, two rows, two rows, In the past, you have been trying to synthesize the formula for a long time (2 years ago, you want to synthesize a multi-item formula, you want to make a multi-item formula, and you want to do it actively.), you can add a group to a group that is not available, and you want to add a group for a long time. The upper part of the system, the number of the group, the number of the group and the number of the group. The multi-project environment shows that you can use the multi-project environment to improve the performance of multi-project environment. You want to know the number of items in the program. You can see that in the results area, you need to know that you are well-known in the "shore field results", and that you want to make sure that you have a lot of information. We would like to make sure that you can make use of the information you need to make sure that you can make use of the information you need. I don't want to make any contact with each other. I don't want to make any contact with each other. I don't want to talk about it. I don't want to talk about it. I don't want to talk about it. If you add a group to a Wey1 algebra and hold the same quantity as a natural one, you will get a number of points. In Wey1 algebra, you want to add a group of people. Professor R.Fenn, a professor of V.Turaev, wants to study a group of people alone.
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On braid presentation of knotted surfaces and enveloping monoidal quandles
关于结曲面和包络幺半群的辫状表示
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一;山崎隆雄;Seiichi Kamada;加藤文元;Seiichi Kamada;加藤文元;Seiichi Kamada
- 通讯作者:Seiichi Kamada
長仮想結び目と非可換環上の加群
非交换环上的长虚拟结和模
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:木村俊一;高橋宣能;Seiichi Kamada;加藤文元;Seiichi Kamada;木村俊一;木村俊一;鎌田聖一
- 通讯作者:鎌田聖一
Quandles derived from dynamical systems and subsets which are closed under the quandle operations
从动力系统和子集导出的 Quandle,这些系统和子集在 qudle 运算下是封闭的
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:木村俊一;高橋宣能;Seiichi Kamada
- 通讯作者:Seiichi Kamada
Graphic descriptions of monodromy representations
单一性表示的图形描述
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Atsushi Ishii;Naoko Kamada;Seiichi Kamada;Gunther Cornelissen,Fumiharu Kato;Fumiharu Kato;Seiichi Kamada
- 通讯作者:Seiichi Kamada
Word representation of cords on a punctured plane
刺穿平面上绳索的文字表示
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S.Kamada 他
- 通讯作者:S.Kamada 他
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
鎌田 聖一其他文献
Local cohomology and t-structure
局部上同调和 t 结构
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yamaguchi;Takao;鎌田 聖一;納谷信;Yuji Yoshino - 通讯作者:
Yuji Yoshino
結び目のトポロジーとカンドル代数
结拓扑和 Candl 代数
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R.E.L. Aldred;Yoshimi Egawa;JunFujisawa;Katsuhiro Ota;Akira Saito;M. Yamamoto;藤井良宜;鎌田 聖一 - 通讯作者:
鎌田 聖一
離散群の離散群の剛性への幾何学的アプローチ--個々の群からランダム群へ
离散群刚度的几何方法——从个体群到随机群
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yamaguchi;Takao;鎌田 聖一;納谷信 - 通讯作者:
納谷信
非単純2次元ブレイドのチャート表示について
关于非简单二维叶片的图表显示
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K.Saji;M.Umehara;K.Yamada;Seiichi Kamada;近藤 剛史;Masato Wakayama;塩谷 隆;Michiko Yuri;井関裕靖;鎌田 聖一 - 通讯作者:
鎌田 聖一
崩壊多様体に対するスペクトル逆問題
塌缩流形的谱反问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
K.Nishi;Y.Nishiura;T.Teramoto;Michiko Yuri;納谷信;Masato Wakayama;坂上貴之;鎌田 聖一;関口次郎;山 口 孝男 - 通讯作者:
山 口 孝男
鎌田 聖一的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('鎌田 聖一', 18)}}的其他基金
Research on 4-dimensional topology from the viewpoint of graphics and quandle theory
从图论和四维理论角度研究四维拓扑
- 批准号:
19H01788 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Low-dimensional Topology: Knotted surfaces as real algebraic varieties
低维拓扑:作为实代数簇的结曲面
- 批准号:
18F18751 - 财政年份:2018
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
低次元トポロジー、ブレイド群の一般化と4次元の結び目理論
低维拓扑、叶片组推广和4维结理论
- 批准号:
16F16793 - 财政年份:2016
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
カンドルおよびバイカンドルを用いた結び目と曲面結び目の研究
使用蜡烛和双蜡烛研究结和弯曲结
- 批准号:
15F15319 - 财政年份:2015
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
カンドルのブレイドホモロジー理論と結び目理論への応用
昆德尔的叶片同调理论及其在结理论中的应用
- 批准号:
13F03315 - 财政年份:2013
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
グラフィクスとカンドル理論の観点からの4次元トポロジーの研究
图学和Cundle理论视角下的四维拓扑研究
- 批准号:
17340017 - 财政年份:2005
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
2次元結び目とブレイド理論及びカンドル・コホモロジーの研究
二维结辫理论与Quandle上同调研究
- 批准号:
13740046 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
低次元の結び目とブレイドの構造の研究
低维结和编织结构的研究
- 批准号:
09740066 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
結び目・絡み目とブレイドの高次元化に関する研究
结/链接和辫子高维的研究
- 批准号:
08740068 - 财政年份:1996
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
4次元多様体内の閉曲面とブレイド理論に関する研究
4维流形闭曲面及叶片理论研究
- 批准号:
07740072 - 财政年份:1995
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)














{{item.name}}会员




