カンドルのブレイドホモロジー理論と結び目理論への応用
昆德尔的叶片同调理论及其在结理论中的应用
基本信息
- 批准号:13F03315
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2013
- 资助国家:日本
- 起止时间:2013-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
前年度行った有向空間3価グラフのダイアグラムをqualgebraによって彩色し、カンドルコサイクル不変量を一般化する研究で、有向空間3価グラフをブレイド状に変形しておくことが有効である。有向空間3価グラフおよび一般の有向空間グラフのブレイド表示に関するアレクサンダーとマルコフの定理を構成した。それは、どんな有向空間3価グラフまたは有向空間グラフも分岐ブレイドの形で表すことができ、そのようなブレイド表示はある基本変形の差を除けば一意的に定まるという定理である。また、カンドルのホモロジー理論を用いた結び目不変量であるカンドルコサイクル不変量について、Carter達が導入したねじれカンドルコサイクル不変量とChengとGaoが導入した正カンドルコサイクル不変量を、シャドーカンドルコサイクル不変量として自然に解釈する方法を与えた。この研究に関しては、田中心氏に共同研究者として参加してもらい、論文にまとめ、Journal of Knot Theory and Its Applicationから出版を受理された。研究分担者のV. LEBEDは、平成26年5月に京都大学数理解析研究所で開催された研究集会「Intelligence of Low-dimensional Topology」、7月に東北大学で開催されたトポロジーシンポジウム、8月に韓国釜山で開催された国際会議「Knots and Low Dimensional Manifolds」で研究発表を行った。
In the past year, the research on the generalization of color, color and quantity of directional space 3-D transformation has been carried out. The theorem of directional space 3 is composed of directional space 3 and directional space 3 A direct space 3 is a direct space 3. A direct space 3 is a direct space 3 is a direct space 3 is In addition, Cheng and Gao introduced the theory and method of natural solution. The Journal of Knot Theory and Its Application was published. Study Contributor V. LEBED held a research conference entitled "Intelligence of Low-dimensional Topology" at Kyoto University's Institute of Mathematical Analysis in May 2006, a research conference entitled "Knots and Low Dimensional Manifolds" at Tohoku University in July, and a research conference entitled "Knots and Low Dimensional Manifolds" at Busan, Korea in August.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laver tables: from set theory to braid theory
紫菜桌:从集合论到辫子理论
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Song;Y.;Hakoda;Y.;Sanefuji;W.;& Cheng;C.;白玉冬;Victoria Lebed
- 通讯作者:Victoria Lebed
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
鎌田 聖一其他文献
Local cohomology and t-structure
局部上同调和 t 结构
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yamaguchi;Takao;鎌田 聖一;納谷信;Yuji Yoshino - 通讯作者:
Yuji Yoshino
結び目のトポロジーとカンドル代数
结拓扑和 Candl 代数
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R.E.L. Aldred;Yoshimi Egawa;JunFujisawa;Katsuhiro Ota;Akira Saito;M. Yamamoto;藤井良宜;鎌田 聖一 - 通讯作者:
鎌田 聖一
離散群の離散群の剛性への幾何学的アプローチ--個々の群からランダム群へ
离散群刚度的几何方法——从个体群到随机群
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yamaguchi;Takao;鎌田 聖一;納谷信 - 通讯作者:
納谷信
非単純2次元ブレイドのチャート表示について
关于非简单二维叶片的图表显示
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K.Saji;M.Umehara;K.Yamada;Seiichi Kamada;近藤 剛史;Masato Wakayama;塩谷 隆;Michiko Yuri;井関裕靖;鎌田 聖一 - 通讯作者:
鎌田 聖一
崩壊多様体に対するスペクトル逆問題
塌缩流形的谱反问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
K.Nishi;Y.Nishiura;T.Teramoto;Michiko Yuri;納谷信;Masato Wakayama;坂上貴之;鎌田 聖一;関口次郎;山 口 孝男 - 通讯作者:
山 口 孝男
鎌田 聖一的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('鎌田 聖一', 18)}}的其他基金
Research on 4-dimensional topology from the viewpoint of graphics and quandle theory
从图论和四维理论角度研究四维拓扑
- 批准号:
19H01788 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Low-dimensional Topology: Knotted surfaces as real algebraic varieties
低维拓扑:作为实代数簇的结曲面
- 批准号:
18F18751 - 财政年份:2018
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
低次元トポロジー、ブレイド群の一般化と4次元の結び目理論
低维拓扑、叶片组推广和4维结理论
- 批准号:
16F16793 - 财政年份:2016
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
カンドルおよびバイカンドルを用いた結び目と曲面結び目の研究
使用蜡烛和双蜡烛研究结和弯曲结
- 批准号:
15F15319 - 财政年份:2015
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
グラフィクスとカンドル理論の観点からの4次元トポロジーの研究
图学和Cundle理论视角下的四维拓扑研究
- 批准号:
17340017 - 财政年份:2005
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
カンドルホモロジーと結び目不変量のバイカンドルへの一般化に関する研究
Candle同源性及结不变量推广到双象限的研究
- 批准号:
17654017 - 财政年份:2005
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Exploratory Research
2次元結び目とブレイド理論及びカンドル・コホモロジーの研究
二维结辫理论与Quandle上同调研究
- 批准号:
13740046 - 财政年份:2001
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
低次元の結び目とブレイドの構造の研究
低维结和编织结构的研究
- 批准号:
09740066 - 财政年份:1997
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
結び目・絡み目とブレイドの高次元化に関する研究
结/链接和辫子高维的研究
- 批准号:
08740068 - 财政年份:1996
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
4次元多様体内の閉曲面とブレイド理論に関する研究
4维流形闭曲面及叶片理论研究
- 批准号:
07740072 - 财政年份:1995
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)














{{item.name}}会员




